These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
97 related articles for article (PubMed ID: 6288133)
1. Proton longitudinal relaxation investigation of histidyl residues in human normal adult hemoglobin. Russu IM; Ho C Biophys J; 1982 Aug; 39(2):203-10. PubMed ID: 6288133 [TBL] [Abstract][Full Text] [Related]
2. Proton longitudinal relaxation investigation of histidyl residues of normal human adult and sickle deoxyhemoglobin: evidence for the existence of pregelation aggregates in sickle deoxyhemoglobin solutions. Russu IM; Ho C Proc Natl Acad Sci U S A; 1980 Nov; 77(11):6577-81. PubMed ID: 6256747 [TBL] [Abstract][Full Text] [Related]
3. A proton nuclear magnetic resonance investigation of histidyl residues in human normal adult hemoglobin. Russu IM; Ho NT; Ho C Biochemistry; 1982 Sep; 21(20):5031-43. PubMed ID: 6291598 [TBL] [Abstract][Full Text] [Related]
4. Contribution of surface histidyl residues in the alpha-chain to the Bohr effect of human normal adult hemoglobin: roles of global electrostatic effects. Sun DP; Zou M; Ho NT; Ho C Biochemistry; 1997 Jun; 36(22):6663-73. PubMed ID: 9184146 [TBL] [Abstract][Full Text] [Related]
5. A proton nuclear magnetic resonance investigation of proximal histidyl residues in human normal and abnormal hemoglobins. A probe for the heme pocket. Takahashi S; Lin AK; Ho C Biophys J; 1982 Jul; 39(1):33-40. PubMed ID: 7104448 [TBL] [Abstract][Full Text] [Related]
6. Roles of the beta 146 histidyl residue in the molecular basis of the Bohr effect of hemoglobin: a proton nuclear magnetic resonance study. Busch MR; Mace JE; Ho NT; Ho C Biochemistry; 1991 Feb; 30(7):1865-77. PubMed ID: 1993201 [TBL] [Abstract][Full Text] [Related]
7. A high-resolution proton nuclear-magnetic-resonance investigation of carp hemoglobin. Conformational differences between carp and human normal adult hemoglobins in solution. Dalvit C; Miura S; de Young A; Noble RW; Cerdonio M; Ho C Eur J Biochem; 1984 Jun; 141(2):255-9. PubMed ID: 6329750 [TBL] [Abstract][Full Text] [Related]
8. A proton nuclear magnetic resonance investigation of histidyl residues in sickle hemoglobin. Russu IM; Ho C Biochemistry; 1982 Sep; 21(20):5044-51. PubMed ID: 6291599 [TBL] [Abstract][Full Text] [Related]
9. Experimental evidence for the role of cross-relaxation in proton nuclear magnetic resonance spin lattice relaxation time measurements in proteins. Sykes BD; Hull WE; Snyder GH Biophys J; 1978 Feb; 21(2):137-46. PubMed ID: 623862 [TBL] [Abstract][Full Text] [Related]
10. Theory of relaxation of mobile water protons induced by protein NH moieties, with application to rat heart muscle and calf lens homogenates. Koenig SH Biophys J; 1988 Jan; 53(1):91-6. PubMed ID: 2829984 [TBL] [Abstract][Full Text] [Related]
11. Amide proton spin-lattice relaxation in polypeptides. A field-dependence study of the proton and nitrogen dipolar interactions in alumichrome. Llinás M; Klein MP; Wüthrich K Biophys J; 1978 Dec; 24(3):849-62. PubMed ID: 737289 [TBL] [Abstract][Full Text] [Related]
13. Dynamics of erabutoxin b as studied by nuclear magnetic resonance. Relaxation studies of methyl proton resonances. Inagaki F; Boyd J; Campbell ID; Clayden NJ; Hull WE; Tamiya N; Williams RJ Eur J Biochem; 1982 Jan; 121(3):609-16. PubMed ID: 6276176 [TBL] [Abstract][Full Text] [Related]
14. Use of 1H longitudinal relaxation times in the solution structure of paramagnetic proteins. Application to [4Fe-4S] proteins. Huber JG; Moulis JM; Gaillard J Biochemistry; 1996 Oct; 35(39):12705-11. PubMed ID: 8841114 [TBL] [Abstract][Full Text] [Related]
15. Paramagnetic proton nuclear spin relaxation theory of low-symmetry complexes for electron spin quantum number S = 52. Strandberg E; Westlund P J Magn Reson; 1999 Apr; 137(2):333-44. PubMed ID: 10089167 [TBL] [Abstract][Full Text] [Related]
16. Molecular theory of field-dependent proton spin-lattice relaxation in tissue. Halle B Magn Reson Med; 2006 Jul; 56(1):60-72. PubMed ID: 16732594 [TBL] [Abstract][Full Text] [Related]
18. The line shapes of the water proton resonances of red blood cells containing carbonyl hemoglobin, deoxyhemoglobin, and methemoglobin: implications for the interpretation of proton MRI at fields of 1.5 T and below. Matwiyoff NA; Gasparovic C; Mazurchuk R; Matwiyoff G Magn Reson Imaging; 1990; 8(3):295-301. PubMed ID: 2366641 [TBL] [Abstract][Full Text] [Related]
19. NMR visibility studies of N-delta proton of proximal histidine in deoxyhemoglobin in lysed and intact red cells. Wang DJ; Nioka S; Wang Z; Leigh JS; Chance B Magn Reson Med; 1993 Dec; 30(6):759-63. PubMed ID: 8139460 [TBL] [Abstract][Full Text] [Related]
20. A proton nuclear magnetic resonance investigation of the anion Bohr effect of human normal adult hemoglobin. Russu IM; Wu SS; Ho NT; Kellogg GW; Ho C Biochemistry; 1989 Jun; 28(12):5298-306. PubMed ID: 2765535 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]