These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

359 related articles for article (PubMed ID: 6288261)

  • 1. Chloroplast DNA rearrangements are more frequent when a large inverted repeat sequence is lost.
    Palmer JD; Thompson WF
    Cell; 1982 Jun; 29(2):537-50. PubMed ID: 6288261
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chloroplast genomes of two conifers lack a large inverted repeat and are extensively rearranged.
    Strauss SH; Palmer JD; Howe GT; Doerksen AH
    Proc Natl Acad Sci U S A; 1988 Jun; 85(11):3898-902. PubMed ID: 2836862
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Clone banks of the mung bean, pea and spinach chloroplast genomes.
    Palmer JD; Thompson WF
    Gene; 1981 Oct; 15(1):21-6. PubMed ID: 6271631
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rearrangements in the chloroplast genomes of mung bean and pea.
    Palmer JD; Thompson WF
    Proc Natl Acad Sci U S A; 1981 Sep; 78(9):5533-7. PubMed ID: 16593087
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolutionary re-organisation of a large operon in adzuki bean chloroplast DNA caused by inverted repeat movement.
    Perry AS; Brennan S; Murphy DJ; Kavanagh TA; Wolfe KH
    DNA Res; 2002 Oct; 9(5):157-62. PubMed ID: 12465715
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The site of deletion of the inverted repeat in pea chloroplast DNA contains duplicated gene fragments.
    Wolfe KH
    Curr Genet; 1988; 13(1):97-9. PubMed ID: 3359497
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sequence of the trnH gene and the inverted repeat structure deletion site of the broad bean chloroplast genome.
    Herdenberger F; Pillay DT; Steinmetz A
    Nucleic Acids Res; 1990 Mar; 18(5):1297. PubMed ID: 2320425
    [No Abstract]   [Full Text] [Related]  

  • 8. Isolation, characterization and sequencing of a novel repetitive DNA from the mung bean Vigna radiata.
    Roy P; Bhattacharyya N; Biswas BB
    Gene; 1988 Dec; 73(1):57-66. PubMed ID: 3243436
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of insertions/deletions in the evolution of the intergenic region between psbA and trnH in the chloroplast genome.
    Aldrich J; Cherney BW; Merlin E; Christopherson L
    Curr Genet; 1988 Aug; 14(2):137-46. PubMed ID: 3180272
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural rearrangements, including parallel inversions, within the chloroplast genome of Anemone and related genera.
    Hoot SB; Palmer JD
    J Mol Evol; 1994 Mar; 38(3):274-81. PubMed ID: 8006994
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dispersed repeats and structural reorganization in subclover chloroplast DNA.
    Milligan BG; Hampton JN; Palmer JD
    Mol Biol Evol; 1989 Jul; 6(4):355-68. PubMed ID: 2615639
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physical and gene mapping of chloroplast DNA from Atriplex triangularis and Cucumis sativa.
    Palmer JD
    Nucleic Acids Res; 1982 Mar; 10(5):1593-605. PubMed ID: 6280152
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conservation of sequence arrangement among higher plant chloroplast DNAs: molecular cross hybridization among the Solanaceae and between Nicotiana and Spinacia.
    Fluhr R; Edelman M
    Nucleic Acids Res; 1981 Dec; 9(24):6841-53. PubMed ID: 6278451
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The highly rearranged chloroplast genome of Trachelium caeruleum (Campanulaceae): multiple inversions, inverted repeat expansion and contraction, transposition, insertions/deletions, and several repeat families.
    Cosner ME; Jansen RK; Palmer JD; Downie SR
    Curr Genet; 1997 May; 31(5):419-29. PubMed ID: 9162114
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extensive and widespread homologies between mitochondrial DNA and chloroplast DNA in plants.
    Stern DB; Palmer JD
    Proc Natl Acad Sci U S A; 1984 Apr; 81(7):1946-50. PubMed ID: 16593442
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel evolutionary variation in transcription and location of two chloroplast genes.
    Palmer JD; Edwards H; Jorgensen RA; Thompson WF
    Nucleic Acids Res; 1982 Nov; 10(21):6819-32. PubMed ID: 6757868
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hybridization of bean, spinach, maize and Euglena chloroplast transfer RNAs with homologous and heterologous chloroplast DNAs. An approach to the study of homology between chloroplast tRNAs from various species.
    Mubumbila M; Burkard G; Keller M; Steinmetz A; Crouse E; Weil JH
    Biochim Biophys Acta; 1980 Aug; 609(1):31-9. PubMed ID: 7407185
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sequence analysis of the junction of the large single copy region and the large inverted repeat in the petunia chloroplast genome.
    Aldrich J; Cherney BW; Williams C; Merlin E
    Curr Genet; 1988 Nov; 14(5):487-92. PubMed ID: 3224388
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intervening sequences in chloroplast genomes.
    Koller B; Delius H
    Cell; 1984 Mar; 36(3):613-22. PubMed ID: 6697389
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of a large inversion in the spinach chloroplast genome relative to Marchantia: a possible transposon-mediated origin.
    Zhou DX; Massenet O; Quigley F; Marion MJ; Monéger F; Huber P; Mache R
    Curr Genet; 1988 May; 13(5):433-9. PubMed ID: 2841033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.