BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 6288333)

  • 1. [Activity of systems of superoxide radical formation and detoxication in hepatic carcinogenesis].
    Tarakhovskiĭ AM; Osipova LA; Shliakhovenko VA; Bykorez AI
    Dokl Akad Nauk SSSR; 1982; 265(2):478-80. PubMed ID: 6288333
    [No Abstract]   [Full Text] [Related]  

  • 2. [Superoxide dismutase activity and the membrane formation of superoxide radicals in tumorous and normal tissues].
    Zbarskiĭ IB; Peskin AV
    Vestn Akad Med Nauk SSSR; 1982; (9):24-8. PubMed ID: 6293216
    [No Abstract]   [Full Text] [Related]  

  • 3. Superoxide production by purified hamster hepatic nuclei.
    Patton SE; Rosen GM; Rauckman EJ
    Mol Pharmacol; 1980 Nov; 18(3):588-93. PubMed ID: 6258050
    [No Abstract]   [Full Text] [Related]  

  • 4. [Effect of selenium on the system of superoxide anion radical formation and detoxication in hepatocarcinogenesis].
    Babenko GA; Pogribnyĭ IP
    Ukr Biokhim Zh (1978); 1985; 57(6):51-5. PubMed ID: 3000038
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Disordered functioning of the superoxide radical-superoxide dismutase system in rat liver ischemia].
    Rashba IuE; Vartanian LS; Seregina LA; Komarov PG; Bilenko MV
    Biull Eksp Biol Med; 1986 Nov; 102(11):559-61. PubMed ID: 3022843
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Formation of superoxide radicals in membranes of subcellular organelles in regenerating liver].
    Vartanian LS; Sadovnikova IP; Gurevich SM; Sokolova IS
    Biokhimiia; 1992 May; 57(5):671-8. PubMed ID: 1322194
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 1-Hydroxyethyl radical formation during NADPH- and NADH-dependent oxidation of ethanol by human liver microsomes.
    Rao DN; Yang MX; Lasker JM; Cederbaum AI
    Mol Pharmacol; 1996 May; 49(5):814-21. PubMed ID: 8622631
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [The role of the system of superoxide radical formation and detoxication in the mechanism of the antineoplastic effect of adriamycin].
    Tarakhovskiĭ AM; Zhmareva EN; Romodanov SA
    Biull Eksp Biol Med; 1983 Nov; 96(11):86-8. PubMed ID: 6315111
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Role of free superoxide radicals in the aging of biological objects].
    Gus'kova RA; Vilenchik MM; Kol'tover VK
    Biofizika; 1980; 25(1):102-5. PubMed ID: 6245717
    [No Abstract]   [Full Text] [Related]  

  • 10. [Membranes of subcellular organelles as the source of superoxide radicals in liver ischemia].
    Vartanian LS; Rashba IuE; Nagler LG; Zgurskiĭ AA; Oktiabr'skaia LA; Bilenko MV
    Biull Eksp Biol Med; 1990 Jun; 109(6):550-2. PubMed ID: 2397290
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of azoreductase by oxygen. The role of the azo anion free radical metabolite in the reduction of oxygen to superoxide.
    Mason RP; Peterson FJ; Holtzman JL
    Mol Pharmacol; 1978 Jul; 14(4):665-71. PubMed ID: 28474
    [No Abstract]   [Full Text] [Related]  

  • 12. Formation and detection of superoxide ions in biological systems. Their involvement in the production of more reactive radicals.
    Rigo A; Viglino P; Stevanato R; Rotilio G
    Bull Eur Physiopathol Respir; 1981; 17 Suppl():63-7. PubMed ID: 6265010
    [No Abstract]   [Full Text] [Related]  

  • 13. [Free radicals and the detoxification system in liver microsomes during carcinogenesis].
    Saprin AN; Gurevich SM; Zvegintseva EG
    Dokl Akad Nauk SSSR; 1973 Feb; 208(4):973-6. PubMed ID: 4347194
    [No Abstract]   [Full Text] [Related]  

  • 14. [Electron transport systems in the membranes of rat liver nuclei and microsomes and of hepatoma 22a].
    Peskin AV; Zbarskiĩ IB; Konstantinov AA
    Biokhimiia; 1981 Apr; 46(4):579-89. PubMed ID: 7284478
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Disorders in metabolism of superoxide radicals in tumor-bearing mice during development of Ehrlich ascites carcinoma and their normalization under the effect of ruboxyl].
    Gurevish SM; Vartanian LS; Nagler LG
    Vopr Med Khim; 1993; 39(6):16-20. PubMed ID: 8303863
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Superoxide free radical formation stimulated by (+/-), (+), (-) gossypol in rat liver and kidney microsomes.
    Wu DF; Yu YW
    Proc Chin Acad Med Sci Peking Union Med Coll; 1986; 1(3):150-6. PubMed ID: 2827151
    [No Abstract]   [Full Text] [Related]  

  • 17. Role of superoxide and trace transition metals in the production of alpha-hydroxyethyl radical from ethanol by microsomes from alcohol dehydrogenase-deficient deermice.
    Knecht KT; Thurman RG; Mason RP
    Arch Biochem Biophys; 1993 Jun; 303(2):339-48. PubMed ID: 8390220
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in superoxide production rate and in superoxide dismutase and glutathione peroxidase activities in subcellular organelles in mouse liver under exposure to low doses of low-intensity radiation.
    Vartanyan LS; Gurevich SM; Kozachenko AI; Nagler LG; Lozovskaya EL; Burlakova EB
    Biochemistry (Mosc); 2000 Apr; 65(4):442-6. PubMed ID: 10810181
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Superoxide dismutase-sensitive, NAD(P)H-dependent reduction of oxygen by the membrane-bound redox chains of liver microsomes and hepatoma nuclei in the presence of adrenaline.
    Peskin AV; Zbarsky IB; Konstantinov AA
    Biochem Int; 1984 May; 8(5):733-8. PubMed ID: 6477630
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection and measurement of drug-induced oxygen radical formation.
    Smith MT; Thor H; Orrenius S
    Methods Enzymol; 1984; 105():505-10. PubMed ID: 6328200
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.