BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 6288730)

  • 1. Membrane potential of Plasmodium-infected erythrocytes.
    Mikkelsen RB; Tanabe K; Wallach DF
    J Cell Biol; 1982 Jun; 93(3):685-9. PubMed ID: 6288730
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calcium transport of Plasmodium chabaudi-infected erythrocytes.
    Tanabe K; Mikkelsen RB; Wallach DF
    J Cell Biol; 1982 Jun; 93(3):680-4. PubMed ID: 6288729
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Staining of Plasmodium yoelii-infected mouse erythrocytes with the fluorescent dye rhodamine 123.
    Tanabe K
    J Protozool; 1983 Nov; 30(4):707-10. PubMed ID: 6198515
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Membrane potential of erythrocytic stages of Plasmodium chabaudi free of the host cell membrane.
    Mikkelsen RB; Wallach DF; Van Doren E; Nillni EA
    Mol Biochem Parasitol; 1986 Oct; 21(1):83-92. PubMed ID: 3773936
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transmembrane electrical and pH gradients across human erythrocytes and human peripheral lymphocytes.
    Deutsch CJ; Holian A; Holian SK; Daniele RP; Wilson DF
    J Cell Physiol; 1979 Apr; 99(1):79-93. PubMed ID: 37251
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrochemical proton gradient across the cell membrane of Halobacterium halobium: effect of N,N'-dicyclohexylcarbodiimide, relation to intracellular adenosine triphosphate, adenosine diphosphate, and phosphate concentration, and influence of the potassium gradient.
    Michel H; Oesterhelt D
    Biochemistry; 1980 Sep; 19(20):4607-14. PubMed ID: 7426619
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ion metabolism in malaria-infected erythrocytes.
    Tanabe K
    Blood Cells; 1990; 16(2-3):437-49. PubMed ID: 2175223
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The membrane potential of the intraerythrocytic malaria parasite Plasmodium falciparum.
    Allen RJ; Kirk K
    J Biol Chem; 2004 Mar; 279(12):11264-72. PubMed ID: 14630911
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physicochemical Aspects of the Plasmodium chabaudi-Infected Erythrocyte.
    Hayakawa EH; Kobayashi S; Matsuoka H
    Biomed Res Int; 2015; 2015():642729. PubMed ID: 26557685
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of intracellular pH and proton-potassium exchange in fermenting Escherichia coli grown anaerobically in alkaline medium.
    Trchounian A; Ohanjayan E; Zakharyan E
    Membr Cell Biol; 1998; 12(1):67-78. PubMed ID: 9829260
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An estimation of the light-induced electrochemical potential difference of protons across the membrane of Halobacterium halobium.
    Bakker EP; Rottenberg H; Caplan SR
    Biochim Biophys Acta; 1976 Sep; 440(3):557-72. PubMed ID: 9137
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amino acid uptake and intracellular accumulation in Leishmania major promastigotes are largely determined by an H(+)-pump generated membrane potential.
    Vieira LL; Cabantchik ZI
    Mol Biochem Parasitol; 1995 Dec; 75(1):15-23. PubMed ID: 8720171
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurement of membrane potentials (psi) of erythrocytes and white adipocytes by the accumulation of triphenylmethylphosphonium cation.
    Cheng K; Haspel HC; Vallano ML; Osotimehin B; Sonenberg M
    J Membr Biol; 1980 Oct; 56(3):191-201. PubMed ID: 6779011
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transport of ions in erythrocytes infected by plasmodia.
    Tanabe K; Mikkelsen RB; Wallach DF
    Ciba Found Symp; 1983; 94():64-73. PubMed ID: 6132784
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Erythrocyte membrane potentials determined by hydrogen ion distribution.
    Macey RI; Adorante JS; Orme FW
    Biochim Biophys Acta; 1978 Sep; 512(2):284-95. PubMed ID: 30483
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemical proton gradient across the cell membrane of Halobacterium halobium: comparison of the light-induced increase with the increase of intracellular adenosine triphosphate under steady-state illumination.
    Michel H; Oesterhelt D
    Biochemistry; 1980 Sep; 19(20):4615-19. PubMed ID: 7426620
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vacuolar H(+)-ATPase localized in plasma membranes of malaria parasite cells, Plasmodium falciparum, is involved in regional acidification of parasitized erythrocytes.
    Hayashi M; Yamada H; Mitamura T; Horii T; Yamamoto A; Moriyama Y
    J Biol Chem; 2000 Nov; 275(44):34353-8. PubMed ID: 10915784
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nisin dissipates the proton motive force of the obligate anaerobe Clostridium sporogenes PA 3679.
    Okereke A; Montville TJ
    Appl Environ Microbiol; 1992 Aug; 58(8):2463-7. PubMed ID: 1325140
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The internal-alkaline pH gradient, sensitive to uncoupler and ATPase inhibitor, in growing Clostridium pasteurianum.
    Riebeling V; Thauer RK; Jungermann K
    Eur J Biochem; 1975 Jul; 55(2):445-53. PubMed ID: 237
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transport processes of 2-deoxy-D-glucose in erythrocytes infected with Plasmodium yoelii, a rodent malaria parasite.
    Izumo A; Tanabe K; Kato M; Doi S; Maekawa K; Takada S
    Parasitology; 1989 Jun; 98 Pt 3():371-9. PubMed ID: 2771446
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.