These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 6289244)

  • 1. Tizolemide-induced changes of passive transport components across the basolateral membrane of isolated frog skin.
    Nagel W; Eigler J; Früchtl J
    Pflugers Arch; 1981 Sep; 391(3):219-25. PubMed ID: 6289244
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of antidiuretic hormone upon electrical potential and resistance of apical and basolateral membranes of frog skin.
    Nagel W
    J Membr Biol; 1978 Sep; 42(2):99-122. PubMed ID: 309008
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of standard diuretics and ortho-vanadate on sodium transport across isolated frog skin.
    Eriksson O
    Acta Physiol Scand; 1984 Nov; 122(3):249-60. PubMed ID: 6097097
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Common channels for water and protons at apical and basolateral cell membranes of frog skin and urinary bladder epithelia. Effects of oxytocin, heavy metals, and inhibitors of H(+)-adenosine triphosphatase.
    Harvey B; Lacoste I; Ehrenfeld J
    J Gen Physiol; 1991 Apr; 97(4):749-76. PubMed ID: 1647438
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Active transepithelial potassium transport in frog skin via specific potassium channels in the apical membrane.
    Nielsen R
    Acta Physiol Scand; 1984 Feb; 120(2):287-96. PubMed ID: 6324546
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Origin of transport inhibition after omission of serosal sodium.
    Nagel W
    Am J Physiol; 1987 Jun; 252(6 Pt 1):C623-9. PubMed ID: 3496011
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of standard diuretics and RPH 2823 on transepithelial Na+ transport in isolated frog skin.
    Kipnowski J; Passon J; Detjen C; Düsing R; Miederer S; Kramer HJ
    Klin Wochenschr; 1986 Aug; 64(16):750-9. PubMed ID: 2429018
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microelectrode study of insulin effect on apical and basolateral cell membrane of frog skin: comparison with the effect of 1-deamino-8-D-arginine-vasopressin (dDAVP).
    Ponec J; Bakos P; Lichardus B
    Gen Physiol Biophys; 1989 Jun; 8(3):245-55. PubMed ID: 2670663
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Papaverine reduces the sodium permeability of the apical membrane and the potassium permeability of the basolateral membrane in isolated frog skin.
    Andersen H; Nielsen R
    J Membr Biol; 1992 Mar; 126(3):235-43. PubMed ID: 1321250
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Noise analysis of inward and outward Na+ currents across the apical border of ouabain-treated frog skin.
    Van Driessche W; Erlij D
    Pflugers Arch; 1983 Aug; 398(3):179-88. PubMed ID: 6314237
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of bumetanide on sodium transport of the isolated frog skin and on renal Na-K-ATPase.
    Kramer HJ
    Pharmacology; 1976; 14(6):481-9. PubMed ID: 138861
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intracellular ion activities in frog skin in relation to external sodium and effects of amiloride and/or ouabain.
    Harvey BJ; Kernan RP
    J Physiol; 1984 Apr; 349():501-17. PubMed ID: 6610743
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sodium-selective micro-electrode study of apical permeability in frog skin: effects of sodium, amiloride and ouabain.
    Harvey BJ; Kernan RP
    J Physiol; 1984 Nov; 356():359-74. PubMed ID: 6335175
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Na transport stimulation by novobiocin: intracellular ion concentrations and membrane potential.
    Rick R; Beck FX; Dörge A; Sesselmann E; Thurau K
    Pflugers Arch; 1988 May; 411(5):505-13. PubMed ID: 3260372
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Apical Na+ permeability of frog skin during serosal Cl- replacement.
    Leibowich S; DeLong J; Civan MM
    J Membr Biol; 1988 May; 102(2):121-30. PubMed ID: 2458472
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Effect of thallium ions on sodium and potassium transport in frog skin].
    Skul'skiĭ IA; Lapin AV
    Tsitologiia; 1983 Nov; 25(11):1284-8. PubMed ID: 6318410
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vasopressin, theophylline, PGE2, and indomethacin on active Na transport in frog skin: studies with microelectrodes.
    Els WJ; Helman SI
    Am J Physiol; 1981 Sep; 241(3):F279-88. PubMed ID: 6974506
    [TBL] [Abstract][Full Text] [Related]  

  • 18. K+ secretion across frog skin. Induction by removal of basolateral Cl-.
    Fisher RS; Van Driessche W
    J Gen Physiol; 1991 Feb; 97(2):219-43. PubMed ID: 2016579
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrophysiological studies in principal cells of rat cortical collecting tubules. ADH increases the apical membrane Na+-conductance.
    Schlatter E; Schafer JA
    Pflugers Arch; 1987 Jun; 409(1-2):81-92. PubMed ID: 2441357
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of basolateral membrane conductance in the regulation of transepithelial sodium transport across frog skin.
    Nagel W; Katz U
    Pflugers Arch; 2003 May; 446(2):198-202. PubMed ID: 12739157
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.