BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 6289821)

  • 1. Metabolism of carbon tetrachloride to electrophilic chlorine by liver microsomes: exclusion of cytochrome P-450 catalyzed chloroperoxidase reaction.
    Mico BA; Pohl LR
    Biochem Biophys Res Commun; 1982 Jul; 107(1):27-31. PubMed ID: 6289821
    [No Abstract]   [Full Text] [Related]  

  • 2. Reductive oxygenation of carbon tetrachloride: trichloromethylperoxyl radical as a possible intermediate in the conversion of carbon tetrachloride to electrophilic chlorine.
    Mico BA; Pohl LR
    Arch Biochem Biophys; 1983 Sep; 225(2):596-609. PubMed ID: 6625601
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chloroperoxidase-catalyzed halogenation of antipyrine, a drug substrate of liver microsomal cytochrome P-450.
    Ashley PL; Griffin BW
    Arch Biochem Biophys; 1981 Aug; 210(1):167-78. PubMed ID: 7294825
    [No Abstract]   [Full Text] [Related]  

  • 4. Formation of electrophilic chlorine from carbon tetrachloride--involvement of cytochrome P-450.
    Mico BA; Branchflower RV; Pohl LR
    Biochem Pharmacol; 1983 Aug; 32(15):2357-9. PubMed ID: 6411097
    [No Abstract]   [Full Text] [Related]  

  • 5. Isoflurane enhances dechlorination of carbon tetrachloride in guinea-pig liver microsomes.
    Fujii K; Rahman MM; Yuge O
    J Appl Toxicol; 1996; 16(3):249-53. PubMed ID: 8818866
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure-mechanism relationships in hemoproteins. Oxygenations catalyzed by chloroperoxidase and horseradish peroxidase.
    Ortiz de Montellano PR; Choe YS; DePillis G; Catalano CE
    J Biol Chem; 1987 Aug; 262(24):11641-6. PubMed ID: 3624229
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The nature of the in vitro irreversible binding of carbon tetrachloride to microsomal lipids.
    Villarruel MC; Díaz Gómez MI; Castro JA
    Toxicol Appl Pharmacol; 1975 Jul; 33(1):106-14. PubMed ID: 240222
    [No Abstract]   [Full Text] [Related]  

  • 8. Epoxidation of alkenes by chloroperoxidase catalysis.
    Geigert J; Lee TD; Dalietos DJ; Hirano DS; Neidleman SL
    Biochem Biophys Res Commun; 1986 Apr; 136(2):778-82. PubMed ID: 3010998
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reductive-oxygenation mechanism of metabolism of carbon tetrachloride to phosgene by cytochrome P-450.
    Pohl LR; Schulick RD; Highet RJ; George JW
    Mol Pharmacol; 1984 Mar; 25(2):318-21. PubMed ID: 6700577
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of dietary antioxidants and phenobarbital pretreatment on microsomal lipid peroxidation and activation by carbon tetrachloride.
    Taylor SL; Tappel AL
    Life Sci; 1976 Oct; 19(8):1151-60. PubMed ID: 11382
    [No Abstract]   [Full Text] [Related]  

  • 11. The reaction of chloroperoxidase with chlorite and chlorine dioxide.
    Shahangian S; Hager LP
    J Biol Chem; 1981 Jun; 256(12):6034-40. PubMed ID: 7240190
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of CCl4 metabolism by oxygen varies between isoenzymes of cytochrome P-450.
    Burk RF; Hill KE; Lane JM
    Biochem Biophys Res Commun; 1988 May; 152(3):1463-7. PubMed ID: 3377780
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The apparent loss of cytochrome P-450 associated with metabolic activation of carbon tetrachloride.
    Yamazoe Y; Sugiura M; Kamataki T; Kato R
    Jpn J Pharmacol; 1979 Oct; 29(5):715-21. PubMed ID: 43918
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The mechanism of chloroform and carbon monoxide formation from carbon tetrachloride by microsomal cytochrome P-450.
    Ahr HJ; King LJ; Nastainczyk W; Ullrich V
    Biochem Pharmacol; 1980 Oct; 29(20):2855-61. PubMed ID: 7437085
    [No Abstract]   [Full Text] [Related]  

  • 15. Thianthrene 5-oxide as a probe of the electrophilicity of hemoprotein oxidizing species.
    Alvarez JC; Ortiz de Montellano PR
    Biochemistry; 1992 Sep; 31(35):8315-22. PubMed ID: 1525169
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolism of carbon tetrachloride to phosgene.
    Kubic VL; Anders MW
    Life Sci; 1980 Jun; 26(25):2151-5. PubMed ID: 7401914
    [No Abstract]   [Full Text] [Related]  

  • 17. [Formation of chloroform from carbon tetrachloride in liver microsomes, lipid peroxidation and destruction of cytochrome P-450].
    Reiner O; Athanassopoulos S; Hellmer KH; Murray RE; Uehleke H
    Arch Toxikol; 1972; 29(3):219-33. PubMed ID: 4404917
    [No Abstract]   [Full Text] [Related]  

  • 18. A proposed mechanism for the destruction of cytochrome P450 during carbon tetrachloride metabolism.
    Cheong EH; Bidlack WR
    Proc West Pharmacol Soc; 1977; 20():97-102. PubMed ID: 896868
    [No Abstract]   [Full Text] [Related]  

  • 19. On the mechanism of chlorination by chloroperoxidase.
    Dunford HB; Lambeir AM; Kashem MA; Pickard M
    Arch Biochem Biophys; 1987 Jan; 252(1):292-302. PubMed ID: 3028259
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human liver microsomal cytochrome P-450IIE1. Immunological evaluation of its contribution to microsomal ethanol oxidation, carbon tetrachloride reduction and NADPH oxidase activity.
    Ekström G; von Bahr C; Ingelman-Sundberg M
    Biochem Pharmacol; 1989 Feb; 38(4):689-93. PubMed ID: 2917023
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.