These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 6289884)

  • 1. Proton stoichiometry of adenosine 5'-triphosphate synthesis in rat liver mitochondria studied by phosphorus-31 nuclear magnetic resonance.
    Ogawa S; Lee TM
    Biochemistry; 1982 Aug; 21(18):4467-73. PubMed ID: 6289884
    [No Abstract]   [Full Text] [Related]  

  • 2. An assessment of the role of proton leaks in the mechanistic stoichiometry of oxidative phosphorylation.
    Davis EJ; Davis-van Thienen WI
    Arch Biochem Biophys; 1991 Aug; 289(1):184-6. PubMed ID: 1654845
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The mitochondrial protonic electrochemical potential difference as a point of hormone action. II. New proposals for the activity of glucagon.
    Shears SB
    J Theor Biol; 1981 Jul; 91(1):171-89. PubMed ID: 7300381
    [No Abstract]   [Full Text] [Related]  

  • 4. The efficiencies of the component steps of oxidative phosphorylation. II. Experimental determination of the efficiencies in mitochondria and examination of the equivalence of membrane potential and pH gradient in phosphorylation.
    Jensen BD; Gunter KK; Gunter TE
    Arch Biochem Biophys; 1986 Jul; 248(1):305-23. PubMed ID: 3015029
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The relation between the internal phosphorylation potential and the proton motive force in mitochondria during ATP synthesis and hydrolysis.
    Ogawa S; Lee TM
    J Biol Chem; 1984 Aug; 259(16):10004-11. PubMed ID: 6469951
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ATP synthesis and electrical membrane potential in mitochondria.
    Rottenberg H
    Eur J Biochem; 1970 Jul; 15(1):22-8. PubMed ID: 5489836
    [No Abstract]   [Full Text] [Related]  

  • 7. Adenosine triphosphate synthesis in rat liver mitochondria: change of media and the state-4 jump.
    Archbold GP; Farrington CL; Malpress FH
    Biochem Soc Trans; 1975; 3(4):507-10. PubMed ID: 1183708
    [No Abstract]   [Full Text] [Related]  

  • 8. Contribution of ATP synthesis from endogenous substrates to the oligomycin-sensitive ADP-ATP exchange activity of rat liver mitoplasts.
    Pedersen PL; Catterall WA
    Biochem Biophys Res Commun; 1971 Nov; 45(3):809-15. PubMed ID: 4256848
    [No Abstract]   [Full Text] [Related]  

  • 9. Respiration rates and adenosine triphosphate synthesis in rat liver mitochondria: state 4-3-4 transition experiments.
    Archbold GP; Farrington CL; McKay AM; Malpress FH
    Biochem Soc Trans; 1975; 3(4):504-7. PubMed ID: 1183707
    [No Abstract]   [Full Text] [Related]  

  • 10. Relationship of transmembrane pH and electrical gradients with respiration and adenosine 5'-triphosphate synthesis in mitochondria.
    Holian A; Wilson DF
    Biochemistry; 1980 Sep; 19(18):4213-21. PubMed ID: 7417402
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Light-dependent phosphorylation in mitochondria].
    Vekshin IL
    Mol Biol (Mosk); 1991; 25(1):54-9. PubMed ID: 1832739
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energetics and stoichiometry of oxidative phosphorylation from NADH to cytochrome c in isolated rat liver mitochondria.
    Forman NG; Wilson DF
    J Biol Chem; 1982 Nov; 257(21):12908-15. PubMed ID: 6290486
    [No Abstract]   [Full Text] [Related]  

  • 13. Proton movements and adenosine triphosphate synthesis in rat liver mitochondria.
    Archbold GP; Farrington CL; Malpress FH
    Biochem Soc Trans; 1975; 3(2):321-4. PubMed ID: 236950
    [No Abstract]   [Full Text] [Related]  

  • 14. The interaction between butacaine and rat liver mitochondria as shown by proton magnetic resonance spectroscopy.
    Crompton M; Barritt GJ; Bradbury JH; Bygrave FL
    Biochem Pharmacol; 1976 Nov; 25(22):2461-4. PubMed ID: 136258
    [No Abstract]   [Full Text] [Related]  

  • 15. The mechanism of ion translocation in mitochondria. 3. Coupling of K+ efflux with ATP synthesis.
    Rossi E; Azzone GF
    Eur J Biochem; 1970 Feb; 12(2):319-27. PubMed ID: 5459570
    [No Abstract]   [Full Text] [Related]  

  • 16. Perturbations in hepatic energy metabolism.
    Iles RA; Griffiths JR; Stevens AN
    Biochem Soc Trans; 1985 Oct; 13(5):843-5. PubMed ID: 4065417
    [No Abstract]   [Full Text] [Related]  

  • 17. Flip-flop model of energy interconversion by ATP synthetase.
    Repke KR; Schön R
    Acta Biol Med Ger; 1974; 33(1):K27-38. PubMed ID: 4278420
    [No Abstract]   [Full Text] [Related]  

  • 18. Control of mitochondrial metabolism by the ATP/ADP ratio.
    Davis EJ; Davis-van Thienen WI
    Biochem Biophys Res Commun; 1978 Aug; 83(4):1260-6. PubMed ID: 697859
    [No Abstract]   [Full Text] [Related]  

  • 19. Some characteristics of phosphorylation reactions in rat-liver mitochondria incubated without the addition of adenine nucleotides and their relation to substrate-level phosphorylation.
    Tokumitsu Y; Ui M
    J Biochem; 1973 Sep; 74(3):551-60. PubMed ID: 4356993
    [No Abstract]   [Full Text] [Related]  

  • 20. Net adenosine triphosphate synthesis driven by an external electric field in rat liver mitochondria.
    Hamamoto T; Ohno K; Kagawa Y
    J Biochem; 1982 May; 91(5):1759-66. PubMed ID: 7096314
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.