These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 6290107)

  • 1. Erythrocyte glycolysis in protein-energy malnutrition.
    Mandelbaum IM; Mozes N; Fondu P
    Clin Chim Acta; 1982 Sep; 124(3):263-75. PubMed ID: 6290107
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidative haemolysis in protein malnutrition.
    Vertongen F; Heyder-Bruckner C; Fondu P; Mandelbaum I
    Clin Chim Acta; 1981 Oct; 116(2):217-22. PubMed ID: 6794956
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deficiencies of glycolytic enzymes as a possible cause of hemolytic anemia.
    Martinov MV; Plotnikov AG; Vitvitsky VM; Ataullakhanov FI
    Biochim Biophys Acta; 2000 Mar; 1474(1):75-87. PubMed ID: 10699493
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of pH-induced changes of the glycolysis of human erythrocytes.
    Rapoport I; Rapoport TA; Rapoport SM
    Acta Biol Med Ger; 1978; 37(3):393-401. PubMed ID: 32713
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Relation between energy metabolism, Na+ and K+ levels, and Na,K-ATPase activity in erythrocytes and their volume and shape during overheating].
    Bondarev DP; Kozlov NB
    Vopr Med Khim; 1988; 34(5):87-91. PubMed ID: 2851213
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Membrane-bound ATP fuels the Na/K pump. Studies on membrane-bound glycolytic enzymes on inside-out vesicles from human red cell membranes.
    Mercer RW; Dunham PB
    J Gen Physiol; 1981 Nov; 78(5):547-68. PubMed ID: 6273495
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Erythrocyte ion transport in protein-energy malnutrition.
    Fondu P; Mandelbaum IM; Vis HL
    Am J Clin Nutr; 1979 Apr; 32(4):721-3. PubMed ID: 219676
    [No Abstract]   [Full Text] [Related]  

  • 8. Modified kinetics of erythrocyte membrane Na+-K+ adenosine triphosphatase in protein-energy malnutrition.
    Kaplay SS
    Biochem Med; 1979 Dec; 22(3):282-7. PubMed ID: 231442
    [No Abstract]   [Full Text] [Related]  

  • 9. Erythrocyte sodium-potassium transport in cystic fibrosis.
    Sigström L; Strandvik B
    Pediatr Res; 1992 May; 31(5):425-7. PubMed ID: 1318537
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fructose 2,6-bisphosphate and glucose 1,6-bisphosphate levels in erythrocytes with high and low 2,3-bisphosphoglycerate content during postnatal development.
    Gallego C; Carreras J
    FEBS Lett; 1989 Jul; 251(1-2):74-8. PubMed ID: 2753166
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Intensity of glycolysis and energy metabolism in erythrocytes in experimental hypervitaminosis A].
    Kriukova LV; Grozina AA; Kamaeva SI
    Vopr Med Khim; 1976; 22(5):640-2. PubMed ID: 138257
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energy metabolism and Na+,K+ redistribution in human erythrocytes treated with lipopolysaccharide endotoxin.
    Wallas CH; Warren JR; Kowalski MM
    Proc Soc Exp Biol Med; 1979 Jul; 161(3):255-9. PubMed ID: 223170
    [No Abstract]   [Full Text] [Related]  

  • 13. Energy metabolism in canine erythrocytes associated with inherited high Na+- and K+-stimulated adenosine triphosphatase activity.
    Maede Y; Inaba M
    Am J Vet Res; 1987 Jan; 48(1):114-8. PubMed ID: 3030164
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of human erythrocyte hexokinase. The influence of glycolytic intermediates and inorganic phosphate.
    Rijksen G; Staal GE
    Biochim Biophys Acta; 1977 Nov; 485(1):75-86. PubMed ID: 911866
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adrenergic blockade reduces skeletal muscle glycolysis and Na(+), K(+)-ATPase activity during hemorrhage.
    McCarter FD; James JH; Luchette FA; Wang L; Friend LA; King JK; Evans JM; George MA; Fischer JE
    J Surg Res; 2001 Aug; 99(2):235-44. PubMed ID: 11469892
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Estimation of biochemically different erythrocyte populations during hemolytic anaemia (Markiafava-Mikeli disease)].
    Cherniak NB; Asriian IS
    Vopr Med Khim; 1968; 14(5):483-8. PubMed ID: 5727581
    [No Abstract]   [Full Text] [Related]  

  • 17. Human and dog erythrocytes: relationship between cellular ATP levels, ATP consumption and potassium concentrations.
    Miseta A; Somoskeoy S; Galambos C; Kellermayer M; Wheatley DN; Cameron IL
    Physiol Chem Phys Med NMR; 1992; 24(1):11-20. PubMed ID: 1317586
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of red cell aging in the diagnosis of glycolytic enzyme defects.
    Staal GE; Rijksen G
    Adv Exp Med Biol; 1991; 307():239-49. PubMed ID: 1805589
    [No Abstract]   [Full Text] [Related]  

  • 19. [Effect of hypoxia on biochemical parameters of Scorpaena erythrocytes].
    Soldatov AA; Rusinova OS; Trusevich VV; Zvesdina TF
    Ukr Biokhim Zh (1978); 1994; 66(5):115-8. PubMed ID: 7747338
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Effect of physical exercise on glycolysis in human red blood cells (author's transl)].
    Ohno H
    Hokkaido Igaku Zasshi; 1978 May; 53(3):221-37. PubMed ID: 711126
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.