BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

52 related articles for article (PubMed ID: 6290265)

  • 1. An Asp-Asn substitution in the proteolipid subunit of the ATP-synthase from Escherichia coli leads to a non-functional proton channel.
    Hoppe J; Schairer HU; Friedl P; Sebald W
    FEBS Lett; 1982 Aug; 145(1):21-9. PubMed ID: 6290265
    [No Abstract]   [Full Text] [Related]  

  • 2. Mechanism of type-III protein secretion: Regulation of FlhA conformation by a functionally critical charged-residue cluster.
    Erhardt M; Wheatley P; Kim EA; Hirano T; Zhang Y; Sarkar MK; Hughes KT; Blair DF
    Mol Microbiol; 2017 Apr; 104(2):234-249. PubMed ID: 28106310
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cryo-EM structures of the autoinhibited
    Sobti M; Smits C; Wong AS; Ishmukhametov R; Stock D; Sandin S; Stewart AG
    Elife; 2016 Dec; 5():. PubMed ID: 28001127
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Horizontal membrane-intrinsic α-helices in the stator a-subunit of an F-type ATP synthase.
    Allegretti M; Klusch N; Mills DJ; Vonck J; Kühlbrandt W; Davies KM
    Nature; 2015 May; 521(7551):237-40. PubMed ID: 25707805
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Arrangement of subunits in intact mammalian mitochondrial ATP synthase determined by cryo-EM.
    Baker LA; Watt IN; Runswick MJ; Walker JE; Rubinstein JL
    Proc Natl Acad Sci U S A; 2012 Jul; 109(29):11675-80. PubMed ID: 22753497
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Roles of Oxa1-related inner-membrane translocases in assembly of respiratory chain complexes.
    Bonnefoy N; Fiumera HL; Dujardin G; Fox TD
    Biochim Biophys Acta; 2009 Jan; 1793(1):60-70. PubMed ID: 18522806
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioenergetic mechanism for nisin resistance, induced by the acid tolerance response of Listeria monocytogenes.
    Bonnet M; Rafi MM; Chikindas ML; Montville TJ
    Appl Environ Microbiol; 2006 Apr; 72(4):2556-63. PubMed ID: 16597957
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The F0 complex of the ATP synthase of Escherichia coli contains a proton pathway with large proton polarizability caused by collective proton fluctuation.
    Bartl F; Deckers-Hebestreit G; Altendorf K; Zundel G
    Biophys J; 1995 Jan; 68(1):104-10. PubMed ID: 7711231
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutations altering aspartyl-61 of the omega subunit (uncE protein) of Escherichia coli H+ -ATPase differ in effect on coupled ATP hydrolysis.
    Fillingame RH; Peters LK; White LK; Mosher ME; Paule CR
    J Bacteriol; 1984 Jun; 158(3):1078-83. PubMed ID: 6327626
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of lambda unc transducing bacteriophages in genetic and biochemical characterization of H+-ATPase mutants of Escherichia coli.
    Mosher ME; Peters LK; Fillingame RH
    J Bacteriol; 1983 Dec; 156(3):1078-92. PubMed ID: 6227607
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure and function of proton-translocating adenosine triphosphatase (F0F1): biochemical and molecular biological approaches.
    Futai M; Kanazawa H
    Microbiol Rev; 1983 Sep; 47(3):285-312. PubMed ID: 6226867
    [No Abstract]   [Full Text] [Related]  

  • 12. Subunit b of the membrane moiety (F0) of ATP synthase (F1F0) from Escherichia coli is indispensable for H+ translocation and binding of the water-soluble F1 moiety.
    Schneider E; Altendorf K
    Proc Natl Acad Sci U S A; 1984 Dec; 81(23):7279-83. PubMed ID: 6209711
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The F1F0-ATPase of Escherichia coli. Substitution of proline by leucine at position 64 in the c-subunit causes loss of oxidative phosphorylation.
    Fimmel AL; Jans DA; Langman L; James LB; Ash GR; Downie JA; Senior AE; Gibson F; Cox GB
    Biochem J; 1983 Aug; 213(2):451-8. PubMed ID: 6193778
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The proton-ATPase of bacteria and mitochondria.
    Senior AE; Wise JG
    J Membr Biol; 1983; 73(2):105-24. PubMed ID: 6191035
    [No Abstract]   [Full Text] [Related]  

  • 15. Bacterial adenosine 5'-triphosphate synthase (F1F0): purification and reconstitution of F0 complexes and biochemical and functional characterization of their subunits.
    Schneider E; Altendorf K
    Microbiol Rev; 1987 Dec; 51(4):477-97. PubMed ID: 2893973
    [No Abstract]   [Full Text] [Related]  

  • 16. A chemically explicit model for the molecular mechanism of the F1F0 H+-ATPase/ATP synthases.
    Scarborough GA
    Proc Natl Acad Sci U S A; 1986 Jun; 83(11):3688-92. PubMed ID: 2872673
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Studies on the mechanism of oxidative phosphorylation: effects of specific F0 modifiers on ligand-induced conformation changes of F1.
    Matsuno-Yagi A; Yagi T; Hatefi Y
    Proc Natl Acad Sci U S A; 1985 Nov; 82(22):7550-4. PubMed ID: 2866511
    [TBL] [Abstract][Full Text] [Related]  

  • 18. All three subunits are required for the reconstitution of an active proton channel (F0) of Escherichia coli ATP synthase (F1F0).
    Schneider E; Altendorf K
    EMBO J; 1985 Feb; 4(2):515-8. PubMed ID: 2410260
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The essential carboxyl group in subunit c of the F1F0 ATP synthase can be moved and H(+)-translocating function retained.
    Miller MJ; Oldenburg M; Fillingame RH
    Proc Natl Acad Sci U S A; 1990 Jul; 87(13):4900-4. PubMed ID: 2142302
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Essential residues in the polar loop region of subunit c of Escherichia coli F1F0 ATP synthase defined by random oligonucleotide-primed mutagenesis.
    Fraga D; Fillingame RH
    J Bacteriol; 1991 Apr; 173(8):2639-43. PubMed ID: 2013577
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.