These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 6290338)
1. Synthesis of the nutL DNA segments and analysis of antitermination and termination functions in coliphage lambda. Drahos D; Galluppi GR; Caruthers M; Szybalski W Gene; 1982 Jun; 18(3):343-54. PubMed ID: 6290338 [TBL] [Abstract][Full Text] [Related]
2. Thermosensitivity of a DNA recognition site: activity of a truncated nutL antiterminator of coliphage lambda. Peltz SW; Brown AL; Hasan N; Podhajska AJ; Szybalski W Science; 1985 Apr; 228(4695):91-3. PubMed ID: 3156406 [TBL] [Abstract][Full Text] [Related]
3. Antitermination and termination functions of the cloned nutL, N, and tL1 modules of coliphage lambda. Drahos D; Szybalski W Gene; 1981 Dec; 16(1-3):261-74. PubMed ID: 6211393 [TBL] [Abstract][Full Text] [Related]
4. Boundaries of the nutL antiterminator of coliphage lambda and effects of mutations in the spacer region between boxA and boxB. Hasan N; Szybalski W Gene; 1986; 50(1-3):87-96. PubMed ID: 2953653 [TBL] [Abstract][Full Text] [Related]
5. Transcriptional antitermination activity of the synthetic nut elements of coliphage lambda. I. Assembly of the nutR recognition site from boxA and nut core elements. Brown AL; Szybalski W Gene; 1985; 39(2-3):121-7. PubMed ID: 3005108 [TBL] [Abstract][Full Text] [Related]
6. Transcriptional antitermination activity of the synthetic nut elements of coliphage lambda. I. Assembly of the nutR recognition site from boxA and nut core elements. Brown AL; Szybalski W Gene; 1986; 42(1):E125-32. PubMed ID: 2941338 [TBL] [Abstract][Full Text] [Related]
7. Sequence changes in coliphage lambda mutants affecting the nutL antitermination site and termination by tL1 and tL2. Somasekhar G; Drahos D; Salstrom JS; Szybalski W Gene; 1982 Dec; 20(3):477-80. PubMed ID: 6219918 [TBL] [Abstract][Full Text] [Related]
8. Characterization and sequencing of the region containing gene N, the nutL site and tL1 terminator of bacteriophage phi 80. Tanaka S; Matsushiro A Gene; 1985; 38(1-3):119-29. PubMed ID: 4065570 [TBL] [Abstract][Full Text] [Related]
9. A rho-independent termination caused by the cloned inverted nut L site of phage lambda. Luk KC Mol Gen Genet; 1982; 187(2):320-5. PubMed ID: 6217398 [TBL] [Abstract][Full Text] [Related]
10. Control of cloned gene expression by promoter inversion in vivo: construction of the heat-pulse-activated att-nutL-p-att-N module. Podhajska AJ; Hasan N; Szybalski W Gene; 1985; 40(1):163-8. PubMed ID: 3005124 [TBL] [Abstract][Full Text] [Related]
11. Effect of the promoter structure on the nutL transcription antitermination function. Hasan N; Szybalski W Gene; 1986; 50(1-3):97-100. PubMed ID: 2953654 [TBL] [Abstract][Full Text] [Related]
12. Mutations of the phage lambda nutL region that prevent the action of Nun, a site-specific transcription termination factor. Baron J; Weisberg RA J Bacteriol; 1992 Mar; 174(6):1983-9. PubMed ID: 1532174 [TBL] [Abstract][Full Text] [Related]
13. Escherichia coli mutations that block transcription termination by phage HK022 Nun protein. Robledo R; Atkinson BL; Gottesman ME J Mol Biol; 1991 Aug; 220(3):613-9. PubMed ID: 1831236 [TBL] [Abstract][Full Text] [Related]
14. Antitermination of E. coli rRNA transcription is caused by a control region segment containing lambda nut-like sequences. Li SC; Squires CL; Squires C Cell; 1984 Oct; 38(3):851-60. PubMed ID: 6091902 [TBL] [Abstract][Full Text] [Related]
15. A zinc-binding region in the beta' subunit of RNA polymerase is involved in antitermination of early transcription of phage HK022. Clerget M; Jin DJ; Weisberg RA J Mol Biol; 1995 May; 248(4):768-80. PubMed ID: 7752239 [TBL] [Abstract][Full Text] [Related]
16. Transcription antitermination in vitro by lambda N gene product: requirement for a phage nut site and the products of host nusA, nusB, and nusE genes. Das A; Wolska K Cell; 1984 Aug; 38(1):165-73. PubMed ID: 6088061 [TBL] [Abstract][Full Text] [Related]
17. The remarkable specificity of a new transcription termination factor suggests that the mechanisms of termination and antitermination are similar. Robert J; Sloan SB; Weisberg RA; Gottesman ME; Robledo R; Harbrecht D Cell; 1987 Nov; 51(3):483-92. PubMed ID: 2822258 [TBL] [Abstract][Full Text] [Related]
18. Mapping of the Q-utilization site (qut) required for antitermination of late transcription in bacteriophage lambda. Somasekhar G; Szybalski W Gene; 1983 Dec; 26(2-3):291-4. PubMed ID: 6231216 [TBL] [Abstract][Full Text] [Related]
19. Transcription termination: sequence and function of the rho-independent tL3 terminator in the major leftward operon of bacteriophage lambda. Luk KC; Szybalski W Gene; 1982 Mar; 17(3):247-58. PubMed ID: 6213446 [TBL] [Abstract][Full Text] [Related]
20. NusA protein is necessary and sufficient in vitro for phage lambda N gene product to suppress a rho-independent terminator placed downstream of nutL. Whalen W; Ghosh B; Das A Proc Natl Acad Sci U S A; 1988 Apr; 85(8):2494-8. PubMed ID: 2965813 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]