These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 6290411)

  • 1. Oxygen-dependent damage involving OH radicals in irradiated bacteria.
    Ewing D
    Int J Radiat Biol Relat Stud Phys Chem Med; 1982 Aug; 42(2):191-4. PubMed ID: 6290411
    [No Abstract]   [Full Text] [Related]  

  • 2. Radiation protection of Escherichia coli B/r by hydroxyl radical scavengers.
    Ewing D; Kubala GJ
    Radiat Res; 1987 Feb; 109(2):256-74. PubMed ID: 3544010
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydroxyl radical damage in low oxygen concentrations in irradiated bacteria.
    Ewing D
    Int J Radiat Biol Relat Stud Phys Chem Med; 1982 Feb; 41(2):203-8. PubMed ID: 6279532
    [No Abstract]   [Full Text] [Related]  

  • 4. The role of hydroxyl radical scavengers in preventing DNA strand breaks induced by X irradiation of toluene-treated Escherichia coli.
    Billen D
    Radiat Res; 1984 Mar; 97(3):626-9. PubMed ID: 6328566
    [No Abstract]   [Full Text] [Related]  

  • 5. Can .OH scavengers protect against direct UV-C damage in vivo?
    Ewing D
    Int J Radiat Biol; 1991 Sep; 60(3):449-52. PubMed ID: 1679085
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of gamma radiation on E. coli ribosomes, II. Efficiencies of inactivation by free radicals.
    Singh H; Singh A
    Int J Radiat Biol Relat Stud Phys Chem Med; 1983 Dec; 44(6):607-13. PubMed ID: 6317588
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of gamma radiation on E. coli ribosomes. I. Inactivation by hydrogen atoms, hydroxyl radicals, hydrated electrons and secondary radicals.
    Singh H; Vadasz JA
    Int J Radiat Biol Relat Stud Phys Chem Med; 1983 Dec; 44(6):601-6. PubMed ID: 6317587
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Free radical scavenging and the expression of potentially lethal damage in X-irradiated repair-deficient Escherichia coli.
    Billen D
    Radiat Res; 1987 Aug; 111(2):354-60. PubMed ID: 2819936
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNA polymerase I is crucial for the repair of potentially lethal damage caused by the indirect effects of X irradiation in Escherichia coli.
    Billen D
    Radiat Res; 1985 Jul; 103(1):163-9. PubMed ID: 2999864
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Fundamental model assays on chemical damages to ribonucleic acids caused by oxygen radicals in aqueous solution].
    Lickl E; Alth G; Ebermann R; Tuma K
    Strahlenther Onkol; 1986 Dec; 162(12):775-8. PubMed ID: 3027909
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of hydroxyl radicals in Escherichia coli killing induced by hydrogen peroxide.
    Brandi G; Cattabeni F; Albano A; Cantoni O
    Free Radic Res Commun; 1989; 6(1):47-55. PubMed ID: 2542139
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RADIOPROTECTIVE EFFECT OF HYDROXYL RADICAL SCAVENGERS ON PROKARYOTIC AND EUKARYOTIC CELLS UNDER VARIOUS GAMMA IRRADIATION CONDITIONS.
    Ondrák L; Vachelová J; Davídková M; Neužilová B; Čuba V; Múčka V
    Radiat Prot Dosimetry; 2019 Dec; 186(2-3):186-190. PubMed ID: 31812995
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Do.OH scavenger secondary radicals protect by competing with oxygen for cellular target sites?
    Ewing D; Walton HL
    Radiat Res; 1991 Oct; 128(1):29-36. PubMed ID: 1656481
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of free radicals produced during the metabolism of mitomycin C in Escherichia coli inactivation.
    Schiavano GF; Brandi G; Salvaggio L; Cattabeni FC; Cantoni O
    Xenobiotica; 1990 May; 20(5):549-54. PubMed ID: 2161589
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The contribution of hydroxyl radical to radiosensitization: a study of DNA damage.
    Skov KA
    Radiat Res; 1984 Sep; 99(3):502-10. PubMed ID: 6089257
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of primary and secondary radicals on chain breaks in ribosomal RNA in E. coli ribosomes.
    Singh H; Bishop J
    Int J Radiat Biol Relat Stud Phys Chem Med; 1984 Aug; 46(2):193-9. PubMed ID: 6206006
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of superoxide in radiation-killing of Escherichia coli and in thymine release from thymidine.
    Lin WS; Wong F; Anderson R
    Biochem Biophys Res Commun; 1987 Sep; 147(2):778-86. PubMed ID: 2820415
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of irradiation conditions on the radiation sensitivity of microorganisms in the presence of OH-radical scavengers.
    Múčka V; Červenák J; Reimitz D; Čuba V; Bláha P; Neužilová B
    Int J Radiat Biol; 2018 Dec; 94(12):1142-1150. PubMed ID: 30451562
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Radioprotective effects of dimethyl sulfoxide in golden hamster embryo cells exposed to gamma rays at 77 K. I. Radical formation as studied by electron spin resonance.
    Miyazaki T; Hayakawa Y; Suzuki K; Suzuki M; Watanabe M
    Radiat Res; 1990 Oct; 124(1):66-72. PubMed ID: 2173014
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Variable protection by OH scavengers against radiation-induced inactivation of isolated transcriptionally active chromatin: the influence of secondary radicals.
    Herskind C; Westergaard O
    Radiat Res; 1988 Apr; 114(1):28-41. PubMed ID: 2832871
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.