BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 6290446)

  • 1. Enzymes of agmatine degradation and the control of their synthesis in Streptococcus faecalis.
    Simon JP; Stalon V
    J Bacteriol; 1982 Nov; 152(2):676-81. PubMed ID: 6290446
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control of enzyme synthesis in the oxalurate catabolic pathway of Streptococcus faecalis ATCC 11700: evidence for the existence of a third carbamate kinase.
    Vander Wauven C; Simon JP; Slos P; Stalon V
    Arch Microbiol; 1986 Sep; 145(4):386-90. PubMed ID: 3024601
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control of enzyme synthesis in the arginine deiminase pathway of Streptococcus faecalis.
    Simon JP; Wargnies B; Stalon V
    J Bacteriol; 1982 Jun; 150(3):1085-90. PubMed ID: 6281235
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzymic conversion of agmatine to putrescine in Lathyrus sativus seedlings. Purification and properties of a multifunctional enzyme (putrescine synthase).
    Srivenugopal KS; Adiga PR
    J Biol Chem; 1981 Sep; 256(18):9532-41. PubMed ID: 6895223
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transport of diamines by Enterococcus faecalis is mediated by an agmatine-putrescine antiporter.
    Driessen AJ; Smid EJ; Konings WN
    J Bacteriol; 1988 Oct; 170(10):4522-7. PubMed ID: 3139630
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The gene cluster for agmatine catabolism of Enterococcus faecalis: study of recombinant putrescine transcarbamylase and agmatine deiminase and a snapshot of agmatine deiminase catalyzing its reaction.
    Llácer JL; Polo LM; Tavárez S; Alarcón B; Hilario R; Rubio V
    J Bacteriol; 2007 Feb; 189(4):1254-65. PubMed ID: 17028272
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fermentation of agmatine in Streptococcus faecalis: occurrence of putrescine transcarbamoylase.
    Roon RJ; Barker HA
    J Bacteriol; 1972 Jan; 109(1):44-50. PubMed ID: 4621632
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of two families of bacterial enzymes in putrescine synthesis from agmatine via agmatine deiminase.
    Landete JM; Arena ME; Pardo I; Manca de Nadra MC; Ferrer S
    Int Microbiol; 2010 Dec; 13(4):169-77. PubMed ID: 21404211
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of enzyme synthesis in the arginine deiminase pathway of Pseudomonas aeruginosa.
    Mercenier A; Simon JP; Vander Wauven C; Haas D; Stalon V
    J Bacteriol; 1980 Oct; 144(1):159-63. PubMed ID: 6252188
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New insight into the transcarbamylase family: the structure of putrescine transcarbamylase, a key catalyst for fermentative utilization of agmatine.
    Polo LM; Gil-Ortiz F; Cantín A; Rubio V
    PLoS One; 2012; 7(2):e31528. PubMed ID: 22363663
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of utilization of L-arginine, L-ornithine, agmatine, and putrescine as nitrogen sources in Escherichia coli K-12.
    Shaibe E; Metzer E; Halpern YS
    J Bacteriol; 1985 Sep; 163(3):938-42. PubMed ID: 3897202
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Agmatine deiminase from cucumber seedlings is a mono-specific enzyme: purification and characteristics.
    Sakakibara Y; Yanagisawa H
    Protein Expr Purif; 2003 Jul; 30(1):88-93. PubMed ID: 12821325
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arginine metabolism in lactic streptococci.
    Crow VL; Thomas TD
    J Bacteriol; 1982 Jun; 150(3):1024-32. PubMed ID: 6281231
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic pathway for the utilization of L-arginine, L-ornithine, agmatine, and putrescine as nitrogen sources in Escherichia coli K-12.
    Shaibe E; Metzer E; Halpern YS
    J Bacteriol; 1985 Sep; 163(3):933-7. PubMed ID: 3897201
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catabolism of L-arginine by Pseudomonas aeruginosa.
    Mercenier A; Simon JP; Haas D; Stalon V
    J Gen Microbiol; 1980 Feb; 116(2):381-9. PubMed ID: 6768836
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structure and biochemical properties of putrescine carbamoyltransferase from Enterococcus faecalis: Assembly, active site, and allosteric regulation.
    Shi D; Yu X; Zhao G; Ho J; Lu S; Allewell NM; Tuchman M
    Proteins; 2012 May; 80(5):1436-47. PubMed ID: 22328207
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The arcABDC gene cluster, encoding the arginine deiminase pathway of Bacillus licheniformis, and its activation by the arginine repressor argR.
    Maghnouj A; de Sousa Cabral TF; Stalon V; Vander Wauven C
    J Bacteriol; 1998 Dec; 180(24):6468-75. PubMed ID: 9851988
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PURIFICATION AND PROPERTIES OF CARBAMATE KINASE FROM STREPTOCOCCUS FAECALIS.
    KALMAN SM; DUFFIELD PH
    Biochim Biophys Acta; 1964 Dec; 92():498-512. PubMed ID: 14264883
    [No Abstract]   [Full Text] [Related]  

  • 19. The arginine deiminase pathway in Rhizobium etli: DNA sequence analysis and functional study of the arcABC genes.
    D'Hooghe I; Vander Wauven C; Michiels J; Tricot C; de Wilde P; Vanderleyden J; Stalon V
    J Bacteriol; 1997 Dec; 179(23):7403-9. PubMed ID: 9393705
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The arc operon for anaerobic arginine catabolism in Pseudomonas aeruginosa contains an additional gene, arcD, encoding a membrane protein.
    Lüthi E; Baur H; Gamper M; Brunner F; Villeval D; Mercenier A; Haas D
    Gene; 1990 Mar; 87(1):37-43. PubMed ID: 2158926
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.