These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 6290934)

  • 21. Interocular transfer of receptive field expansion in cat visual cortex.
    Volchan E; Gilbert CD
    Vision Res; 1995 Jan; 35(1):1-6. PubMed ID: 7839599
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Backward conditioned connection and inhibitory reorganization of the receptive fields of cortical neurons as the basis of subconscious change in the thresholds of visual recognition and detection.
    Shevelev IA
    Neurosci Behav Physiol; 1991; 21(6):505-12. PubMed ID: 1803270
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Receptive field classes of cells in the striate cortex of the cat.
    Henry GH
    Brain Res; 1977 Sep; 133(1):1-28. PubMed ID: 902079
    [No Abstract]   [Full Text] [Related]  

  • 24. Inverted vision causes selective loss of striate cortex neurons with binocular, vertically oriented receptive fields.
    Singer W; Tretter F; Yinon U
    Brain Res; 1979 Jul; 170(1):177-81. PubMed ID: 466399
    [No Abstract]   [Full Text] [Related]  

  • 25. Centrifugal and centripetal connections of the cat visual cortex.
    Shaban VM
    Neurosci Behav Physiol; 1977; 8(3):216-21. PubMed ID: 213740
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Corticogeniculate neurons, corticotectal neurons, and suspected interneurons in visual cortex of awake rabbits: receptive-field properties, axonal properties, and effects of EEG arousal.
    Swadlow HA; Weyand TG
    J Neurophysiol; 1987 Apr; 57(4):977-1001. PubMed ID: 3585466
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Binocular neurons of the rabbit's visual cortex: receptive field characteristics.
    Van Sluyters RC; Stewart DL
    Exp Brain Res; 1974 Jan; 19(2):166-95. PubMed ID: 4361033
    [No Abstract]   [Full Text] [Related]  

  • 28. [Changes in the reactivity of visual cortex neurons after local photic stimulation of their receptive fields].
    Lazareva NA
    Neirofiziologiia; 1981; 13(3):233-40. PubMed ID: 7279045
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Non-linear temporal summation by simple cells in cat striate cortex demonstrated by failure of superposition.
    Dean AF; Tolhurst DJ; Walker NS
    Exp Brain Res; 1982; 45(3):456-8. PubMed ID: 6279423
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Stimulus-dependent modulations of correlated high-frequency oscillations in cat visual cortex.
    Brosch M; Bauer R; Eckhorn R
    Cereb Cortex; 1997; 7(1):70-6. PubMed ID: 9023434
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparison of response of properties of three types of monosynaptic S-cell in cat striate cortex.
    Mustari MJ; Bullier J; Henry GH
    J Neurophysiol; 1982 Mar; 47(3):439-54. PubMed ID: 7069452
    [No Abstract]   [Full Text] [Related]  

  • 32. Effects of superior colliculus removal on receptive-field properties of neurons in lateral suprasylvian visual area of the cat.
    Smith DC; Spear PD
    J Neurophysiol; 1979 Jan; 42(1 Pt 1):57-75. PubMed ID: 430114
    [No Abstract]   [Full Text] [Related]  

  • 33. Immediate effects of total visual deafferentation on single unit activity in the visual cortex of freely behaving cats. II. Rhythmic EEG bursts and PGO waves.
    Kasamatsu T; Adey WR
    Exp Brain Res; 1974; 20(2):171-9. PubMed ID: 4365930
    [No Abstract]   [Full Text] [Related]  

  • 34. Cholinergic modulation of the functional organization of the cat visual cortex.
    Sillito AM; Kemp JA
    Brain Res; 1983 Dec; 289(1-2):143-55. PubMed ID: 6661640
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Spatial summation processes in the receptive fields of visually driven neurons of the cat's cortical area 21a.
    Harutiunian-Kozak BA; Sharanbekian AB; Kazarian AL; Grigorian GG; Kozak JA; Sarkisyan GS; Khachvankian DK
    Arch Ital Biol; 2006 Aug; 144(3-4):127-44. PubMed ID: 16977829
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Suppression without inhibition in visual cortex.
    Freeman TC; Durand S; Kiper DC; Carandini M
    Neuron; 2002 Aug; 35(4):759-71. PubMed ID: 12194874
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Activation of single cells in cat visual cortex by electrical stimulation of the cortical surface.
    Ronner SF; Foote WE; Feldon SE
    Exp Neurol; 1980 Oct; 70(1):47-64. PubMed ID: 7418773
    [No Abstract]   [Full Text] [Related]  

  • 38. Inhibition of visual responses of single units in the cat visual area of the lateral suprasylvian gyrus (Clare-Bishop area) by the introduction of a second visual stimulus.
    Rizzolatti G; Camarda R
    Brain Res; 1975 May; 88(2):357-61. PubMed ID: 1148834
    [No Abstract]   [Full Text] [Related]  

  • 39. Functional alignment of feedback effects from visual cortex to thalamus.
    Wang W; Jones HE; Andolina IM; Salt TE; Sillito AM
    Nat Neurosci; 2006 Oct; 9(10):1330-6. PubMed ID: 16980966
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Relationship between preferred orientation and receptive field position of neurons in extrastriate cortex (area 19) in the cat.
    Leventhal AG; Schall JD; Wallace W
    J Comp Neurol; 1984 Jan; 222(3):445-51. PubMed ID: 6699212
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.