These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 6291269)
1. Comparative studies on the ATPase-binding sites in Ca2+-ATPase and (Na+ + K+)-ATPase by the use of ATP-analogues. Schoner W; Serpersu EH; Pauls H; Patzelt-Wenczler R; Kreickmann H; Rempeters G Z Naturforsch C Biosci; 1982; 37(7-8):692-705. PubMed ID: 6291269 [TBL] [Abstract][Full Text] [Related]
2. Chromium(III)ATP inactivating (Na+ + K+)-ATPase supports Na+-Na+ and Rb+-Rb+ exchanges in everted red blood cells but not Na+,K+ transport. Pauls H; Serpersu EH; Kirch U; Schoner W Eur J Biochem; 1986 Jun; 157(3):585-95. PubMed ID: 2424757 [TBL] [Abstract][Full Text] [Related]
3. Modification of the E1ATP binding site of Na+/K(+)-ATPase by the chromium complex of adenosine 5'-[beta,gamma-methylene]triphosphate blocks the overall reaction but not the partial activities of the E2 conformation. Hamer E; Schoner W Eur J Biochem; 1993 Apr; 213(2):743-8. PubMed ID: 8386635 [TBL] [Abstract][Full Text] [Related]
4. ATP inactivates hydrolysis of the K+-sensitive phosphoenzyme of kidney Na+,K+-transport ATPase and activates that of muscle sarcoplasmic reticulum Ca2+-transport ATPase. Fukushima Y; Yamada S; Nakao M J Biochem; 1984 Feb; 95(2):359-68. PubMed ID: 6325400 [TBL] [Abstract][Full Text] [Related]
5. Demonstration of two different reactive sulfhydryl groups in the ATP-binding sites of Ca2+-ATPase of sarcoplasmic reticulum by disulfides of thioinosine triphosphates. Patzelt-Wenczler R; Kreickmann H; Schoner W Eur J Biochem; 1980 Aug; 109(1):167-75. PubMed ID: 6447597 [TBL] [Abstract][Full Text] [Related]
6. Evidence for a Mg2+-induced conformational change at the ATP-binding site of (Na+ + K+)-ATPase demonstrated with a photoreactive ATP-analogue. Rempeters G; Schoner W Eur J Biochem; 1981 Dec; 121(1):131-7. PubMed ID: 6276168 [TBL] [Abstract][Full Text] [Related]
7. How do MgATP analogues differentially modify high-affinity and low-affinity ATP binding sites of Na+/K(+)-ATPase? Serpersu EH; Bunk S; Schoner W Eur J Biochem; 1990 Jul; 191(2):397-404. PubMed ID: 2166662 [TBL] [Abstract][Full Text] [Related]
8. Phosphate binding and ATP-binding sites coexist in Na+/K(+)-transporting ATPase, as demonstrated by the inactivating MgPO4 complex analogue Co(NH3)4PO4. Buxbaum E; Schoner W Eur J Biochem; 1991 Jan; 195(2):407-19. PubMed ID: 1847680 [TBL] [Abstract][Full Text] [Related]
9. Demonstration of cooperating alpha subunits in working (Na+ + K+)-ATPase by the use of the MgATP complex analogue cobalt tetrammine ATP. Scheiner-Bobis G; Fahlbusch K; Schoner W Eur J Biochem; 1987 Oct; 168(1):123-31. PubMed ID: 2822400 [TBL] [Abstract][Full Text] [Related]
10. Shift to the Na+ form of Na+/K+-transporting ATPase due to modification of the low-affinity ATP-binding site by Co(NH3)4ATP. Scheiner-Bobis G; Esmann M; Schoner W Eur J Biochem; 1989 Jul; 183(1):173-8. PubMed ID: 2473903 [TBL] [Abstract][Full Text] [Related]
11. Inactivation of Na,K-ATPase following Co(NH3)4ATP binding at a low affinity site in the protomeric enzyme unit. Ward DG; Cavieres JD J Biol Chem; 2003 Apr; 278(17):14688-97. PubMed ID: 12591931 [TBL] [Abstract][Full Text] [Related]
12. Mutation to the glutamate in the fourth membrane segment of Na+,K+-ATPase and Ca2+-ATPase affects cation binding from both sides of the membrane and destabilizes the occluded enzyme forms. Vilsen B; Andersen JP Biochemistry; 1998 Aug; 37(31):10961-71. PubMed ID: 9692989 [TBL] [Abstract][Full Text] [Related]
13. Blocking of Na+/K+ transport by the MgPO4 complex analogue Co(NH3)4PO4 leaves the Na+/Na(+)-exchange reaction of the sodium pump unaltered and shifts its high-affinity ATP-binding site to a Na(+)-like form. Buxbaum E; Schoner W Eur J Biochem; 1990 Oct; 193(2):355-60. PubMed ID: 1699757 [TBL] [Abstract][Full Text] [Related]
14. Comparison of ATP binding in the active sites of (Na+ + K(+)-ATPase, Mg(2+)-ATPase and Ca(2+)-ATPase with low affinity to calcium from cardiac sarcolemma. Monosíková R; Breier A; Ziegelhöffer A; Sima F Bratisl Lek Listy; 1991; 92(3-4):142-5. PubMed ID: 1851462 [TBL] [Abstract][Full Text] [Related]
15. Inactivation of (Na+ + K+)-ATPase by chromium(III) complexes of nucleotide triphosphates. Pauls H; Bredenbröcker B; Schoner W Eur J Biochem; 1980 Aug; 109(2):523-33. PubMed ID: 6250846 [TBL] [Abstract][Full Text] [Related]
16. Demonstration of an Mg2+-induced conformational change by photoaffinity labelling of the high-affinity ATP-binding site of (Na+ + K+)-ATPase with 8-azido-ATP. Scheiner-Bobis G; Schoner W Eur J Biochem; 1985 Nov; 152(3):739-46. PubMed ID: 2996898 [TBL] [Abstract][Full Text] [Related]
17. Unifying concept for the coupling between ion pumping and ATP hydrolysis or synthesis. Hammes GG Proc Natl Acad Sci U S A; 1982 Nov; 79(22):6881-4. PubMed ID: 6129623 [TBL] [Abstract][Full Text] [Related]
18. Inhibition of ion pump ATPase activity by 3'-O-(4-benzoyl)benzoyl-ATP (BzATP): assessment of BzATP as an active site-directed probe. Tran CM; Farley RA Biochim Biophys Acta; 1986 Aug; 860(1):9-14. PubMed ID: 3015213 [TBL] [Abstract][Full Text] [Related]
19. Ptilomycalin A, a novel Na+, K(+)- or Ca2(+)-ATPase inhibitor, competitively interacts with ATP at its binding site. Ohizumi Y; Sasaki S; Kusumi T; Ohtani II Eur J Pharmacol; 1996 Aug; 310(1):95-8. PubMed ID: 8880072 [TBL] [Abstract][Full Text] [Related]
20. Analysis of phosphoryl transfer mechanism and catalytic centre geometries of transport ATPase by means of spin-labelled ATP. Streckenbach B; Schwarz D; Repke KR Biochim Biophys Acta; 1980 Sep; 601(1):34-46. PubMed ID: 6250610 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]