These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 6291510)

  • 1. Superoxide-dependent formation of hydroxyl radicals in the presence of iron salts is a feasible source of hydroxy radicals in vivo.
    Halliwell B
    Biochem J; 1982 Aug; 205(2):461-3. PubMed ID: 6291510
    [No Abstract]   [Full Text] [Related]  

  • 2. Superoxide-dependent formation of hydroxyl radicals from NADH and NADPH in the presence of iron salts.
    Rowley DA; Halliwell B
    FEBS Lett; 1982 Jun; 142(1):39-41. PubMed ID: 6286345
    [No Abstract]   [Full Text] [Related]  

  • 3. Superoxide-dependent formation of hydroxyl radicals and lipid peroxidation in the presence of iron salts. Detection of 'catalytic' iron and anti-oxidant activity in extracellular fluids.
    Gutteridge JM; Rowley DA; Halliwell B
    Biochem J; 1982 Sep; 206(3):605-9. PubMed ID: 6293469
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Superoxide-dependent formation of hydroxyl radicals in the presence of iron salts. Its role in degradation of hyaluronic acid by a superoxide-generating system.
    Halliwell B
    FEBS Lett; 1978 Dec; 96(2):238-42. PubMed ID: 215454
    [No Abstract]   [Full Text] [Related]  

  • 5. Formation of hydroxyl radicals from hydrogen peroxide and iron salts by superoxide- and ascorbate-dependent mechanisms: relevance to the pathology of rheumatoid disease.
    Rowley DA; Halliwell B
    Clin Sci (Lond); 1983 Jun; 64(6):649-53. PubMed ID: 6301745
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Superoxide dependent iron release from ferritin in inflammatory diseases.
    Biemond P; Swaak AJ; van Eijk HG; Koster JF
    Free Radic Biol Med; 1988; 4(3):185-98. PubMed ID: 2833431
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of the iron-catalysed formation of hydroxyl radicals from superoxide and of lipid peroxidation by desferrioxamine.
    Gutteridge JM; Richmond R; Halliwell B
    Biochem J; 1979 Nov; 184(2):469-72. PubMed ID: 230833
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of superoxide with other reducing agents in the biological production of hydroxyl radicals.
    Winterbourn CC
    Biochem J; 1979 Aug; 182(2):625-8. PubMed ID: 41521
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation of oxygen radicals in solutions of 7,8-dihydroneopterin.
    Oettl K; Wirleitner B; Baier-Bitterlich G; Grammer T; Fuchs D; Reibnegger G
    Biochem Biophys Res Commun; 1999 Oct; 264(1):262-7. PubMed ID: 10527875
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Free oxygen radiacals and kidney diseases--part I].
    Sakac V; Sakac M
    Med Pregl; 2000; 53(9-10):463-74. PubMed ID: 11320727
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxygen toxicity, oxygen radicals, transition metals and disease.
    Halliwell B; Gutteridge JM
    Biochem J; 1984 Apr; 219(1):1-14. PubMed ID: 6326753
    [No Abstract]   [Full Text] [Related]  

  • 12. Iron and oxygen radicals in tissue damage: implications for the neuronal ceroid lipofuscinoses.
    Gutteridge JM; Westermarck T; Santavuori P
    Acta Neurol Scand; 1983 Dec; 68(6):365-70. PubMed ID: 6666544
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Superoxide-dependent formation of hydroxyl radicals in the presence of iron salts. Detection of 'free' iron in biological systems by using bleomycin-dependent degradation of DNA.
    Gutteridge JM; Rowley DA; Halliwell B
    Biochem J; 1981 Oct; 199(1):263-5. PubMed ID: 6175315
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Release of iron from ferritin by xanthine oxidase. Role of the superoxide radical.
    Bolann BJ; Ulvik RJ
    Biochem J; 1987 Apr; 243(1):55-9. PubMed ID: 3038086
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation and detection of superoxide ions in biological systems. Their involvement in the production of more reactive radicals.
    Rigo A; Viglino P; Stevanato R; Rotilio G
    Bull Eur Physiopathol Respir; 1981; 17 Suppl():63-7. PubMed ID: 6265010
    [No Abstract]   [Full Text] [Related]  

  • 16. [Oxygen radicals: rescue or threat?].
    Bast A
    Tijdschr Kindergeneeskd; 1989 Oct; 57(5):171-7. PubMed ID: 2554529
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Haemochromatosis and superoxide metabolism: Free-radical influenced iron storage?
    Erickson RP
    Lancet; 1978 Sep; 2(8092 Pt 1):743. PubMed ID: 80673
    [No Abstract]   [Full Text] [Related]  

  • 18. Anthracycline antibiotic-stimulated superoxide, hydrogen peroxide, and hydroxyl radical production by NADH dehydrogenase.
    Doroshow JH
    Cancer Res; 1983 Oct; 43(10):4543-51. PubMed ID: 6309369
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The superoxide free radical: its biochemistry and pathophysiology.
    McCord JM
    Surgery; 1983 Sep; 94(3):412-4. PubMed ID: 6310808
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cytochrome P-450 mediates tissue-damaging hydroxyl radical formation during reoxygenation of the kidney.
    Paller MS; Jacob HS
    Proc Natl Acad Sci U S A; 1994 Jul; 91(15):7002-6. PubMed ID: 8041736
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.