These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 6291589)

  • 21. Effect of the delta subunit of Bacillus subtilis RNA polymerase on initiation of RNA synthesis at two bacteriophage phi 29 promoters.
    Dobinson KF; Spiegelman GB
    Biochemistry; 1987 Dec; 26(25):8206-13. PubMed ID: 3126800
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Program of bacteriophage gh-1 DNA transcription in infected Pseudomonas putida.
    Jolly JF
    J Virol; 1979 Jun; 30(3):771-6. PubMed ID: 480467
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Promoter recognition by phage SP01-modified RNA polymerase.
    Talkington C; Pero J
    Proc Natl Acad Sci U S A; 1978 Mar; 75(3):1185-9. PubMed ID: 418406
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cold-sensitive Pseudomonas RNA polymerase. II. Cold-promoted restriction of bacteriophage CB3 and the lack of host-dependent bacteriophage-specific RNA transcription.
    Sobieski RJ; Olsen RH
    J Virol; 1973 Dec; 12(6):1384-94. PubMed ID: 4202618
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Termination of transcription by Escherichia coli ribonucleic acid polymerase in vitro. Effect of altered reaction conditions and mutations in the enzyme protein on termination with T7 and T3 deoxyribonucleic acids.
    Neff NF; Chamberlin MJ
    Biochemistry; 1980 Jun; 19(13):3005-15. PubMed ID: 6994805
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Control of gene expression in P2-related coliphages: the in vitro transcription pattern of coliphage 186.
    Pritchard M; Egan JB
    EMBO J; 1985 Dec; 4(13A):3599-604. PubMed ID: 3912173
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Highly asymmetric transcription by RNA polymerase containing phage-SP01-induced polypeptides and a new host protein.
    Pero J; Nelson J; Fox TD
    Proc Natl Acad Sci U S A; 1975 Apr; 72(4):1589-93. PubMed ID: 805430
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Loss of sigma-factor of RNA polymerase of Xanthomonas campestris pv. oryzae during phage Xp10 infection.
    Liao YD; Kuo TT
    J Biol Chem; 1986 Oct; 261(29):13714-9. PubMed ID: 3020043
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genome organization and transcription in archaebacteria.
    Schnabel H; Schnabel R; Yeats S; Tu J; Gierl A; Neumann H; Zillig W
    Folia Biol (Praha); 1984; 30 Spec No():2-6. PubMed ID: 6202564
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The genome of Bacillus subtilis phage SP10: a comparative analysis with phage SPO1.
    Yee LM; Matsumoto T; Yano K; Matsuoka S; Sadaie Y; Yoshikawa H; Asai K
    Biosci Biotechnol Biochem; 2011; 75(5):944-52. PubMed ID: 21597187
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Polyadenylic acid synthesis activity of purified DNA-dependent RNA polymerase from Caulobacter.
    Cheung KK; Newton A
    J Biol Chem; 1978 Apr; 253(7):2254-61. PubMed ID: 632267
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Properties of unprimed poly(A)-poly(U) synthesis by Caulobacter crescentus RNA polymerase.
    Ikehara K; Kakitani H; Ishino S; Okada Y
    J Biochem; 1979 Mar; 85(3):633-9. PubMed ID: 429257
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The early promoter of bacteriophage Mu: definition of the site of transcript initiation.
    Krause HM; Rothwell MR; Higgins NP
    Nucleic Acids Res; 1983 Aug; 11(16):5483-95. PubMed ID: 6310502
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Inhibition of transcription of cytosine-containing DNA in vitro by the alc gene product of bacteriophage T4.
    Drivdahl RH; Kutter EM
    J Bacteriol; 1990 May; 172(5):2716-27. PubMed ID: 2185231
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification of the sequences recognized by phage phi 29 transcriptional activator: possible interaction between the activator and the RNA polymerase.
    Nuez B; Rojo F; Barthelemy I; Salas M
    Nucleic Acids Res; 1991 May; 19(9):2337-42. PubMed ID: 1904153
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Termination and slippage by bacteriophage T7 RNA polymerase.
    Macdonald LE; Zhou Y; McAllister WT
    J Mol Biol; 1993 Aug; 232(4):1030-47. PubMed ID: 8371265
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Regions specifying transcriptional termination and pausing in the bacteriophage SP01 terminal repeat.
    Brennan SM; Geiduschek EP
    Nucleic Acids Res; 1983 Jun; 11(12):4157-75. PubMed ID: 6408611
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Two groups of capsule-specific coliphages coding for RNA polymerases with new promoter specificities.
    Dietz A; Andrejauskas E; Messerschmid M; Hausmann R
    J Gen Virol; 1986 May; 67 ( Pt 5)():831-8. PubMed ID: 3517223
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transcription of yeast DNA by homologous RNA polymerases I and II: selective transcription of ribosomal genes by RNA polymerase I.
    Holland MJ; Hager GL; Rutter WJ
    Biochemistry; 1977 Jan; 16(1):16-24. PubMed ID: 318852
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Synthesis of in vitro Co1E1 transcripts with 5'-terminal ribonucleotides that exhibit noncomplementarity with the DNA template.
    Parker RC
    Biochemistry; 1986 Oct; 25(21):6593-8. PubMed ID: 3024712
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.