These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 6291706)

  • 21. Central cholinergic pathways and learning and memory processes: presynaptic aspects.
    Durkin T
    Comp Biochem Physiol A Comp Physiol; 1989; 93(1):273-80. PubMed ID: 2568229
    [No Abstract]   [Full Text] [Related]  

  • 22. Neurophysiology of limbic system pathways in the rat: projections from the subicular complex and hippocampus to the entorhinal cortex.
    Finch DM; Wong EE; Derian EL; Babb TL
    Brain Res; 1986 Nov; 397(2):205-13. PubMed ID: 3542119
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Some behavioral effects of entorhinal cortex lesions in the albino rat.
    Ross JF; Walsh LL; Grossman SP
    J Comp Physiol Psychol; 1973 Oct; 85(1):70-81. PubMed ID: 4582954
    [No Abstract]   [Full Text] [Related]  

  • 24. Growth of a new fiber projection in the brain of adult rats: Re-innervation of the dentate gyrus by the contralateral entorhinal cortex following ipsilateral entorhinal lesions.
    Steward O; Cotman CW; Lynch GS
    Exp Brain Res; 1974 Apr; 20(1):45-66. PubMed ID: 4367724
    [No Abstract]   [Full Text] [Related]  

  • 25. Long-term potentiation of the perforant path-granule cell synapse in the rat hippocampus.
    Douglas RM; Goddard GV
    Brain Res; 1975 Mar; 86(2):205-15. PubMed ID: 163667
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Changes in translation of synaptic excitation to dentate granule cell discharge accompanying long-term potentiation. I. Differences between normal and reinnervated dentate gyrus.
    Wilson RC
    J Neurophysiol; 1981 Aug; 46(2):324-38. PubMed ID: 6267216
    [No Abstract]   [Full Text] [Related]  

  • 27. Complete transection of the fornix and reversal of position habit in the rat.
    Hirsh R; Segal M
    Physiol Behav; 1972 Jun; 8(6):1051-4. PubMed ID: 5074016
    [No Abstract]   [Full Text] [Related]  

  • 28. The role of a raphe serotonin system in the control of septal unit activity and hippocampal desynchronization.
    Assaf SY; Miller JJ
    Neuroscience; 1978; 3(6):539-50. PubMed ID: 151244
    [No Abstract]   [Full Text] [Related]  

  • 29. [Functional connections of structures of the limbic brain during elaboration of conditioned foodgetting reflexes to electric stimulation of the septum in the dog].
    Balezina NP
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1983; 33(2):285-92. PubMed ID: 6407232
    [No Abstract]   [Full Text] [Related]  

  • 30. [Conditioned reflexes and differentiation to stimulation of cortical and subcortical brain structures].
    Korzenev AV; Slezin VB; Khananashvili MM
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1979; 29(2):399-402. PubMed ID: 452724
    [No Abstract]   [Full Text] [Related]  

  • 31. Effects for CRF learning by electrical stimulation in the limbic system of rabbits.
    Okudaira Y; Kwak R; Sakamoto T; Otabe K; Suzuki J
    Confin Neurol; 1975; 37(1-3):308-12. PubMed ID: 1132232
    [No Abstract]   [Full Text] [Related]  

  • 32. Feeding and defensive conditioned reflexes to electrical stimulation of different formations of the limbic system.
    Asratyan EA
    Neurosci Behav Physiol; 1981; 11(2):108-15. PubMed ID: 6269018
    [No Abstract]   [Full Text] [Related]  

  • 33. Effects of sensory stimuli on single cell activity in the septum of the cat.
    Hayat A; Feldman S
    Exp Neurol; 1974 May; 43(2):298-313. PubMed ID: 4826970
    [No Abstract]   [Full Text] [Related]  

  • 34. Immediate early gene expression associated with the persistence of heterosynaptic long-term depression in the hippocampus.
    Abraham WC; Christie BR; Logan B; Lawlor P; Dragunow M
    Proc Natl Acad Sci U S A; 1994 Oct; 91(21):10049-53. PubMed ID: 7937835
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hippocampal influence on hyperreactivity induced by septal lesions.
    Gage FH; Olton DS
    Brain Res; 1975 Nov; 98(2):311-25. PubMed ID: 1182522
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electrophysiological analysis of the projection from the contralateral entorhinal cortex to the dentate gyrus in normal rats.
    White WF; Goldowitz D; Lynch G; Cotman CW
    Brain Res; 1976 Sep; 114(2):201-9. PubMed ID: 963548
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Potentiation of the excitatory synaptic action of commissural, associational and entorhinal afferents to dentate granule cells.
    Steward O; White WF; Cotman CW
    Brain Res; 1977 Oct; 134(3):551-60. PubMed ID: 198066
    [No Abstract]   [Full Text] [Related]  

  • 38. Electrophysiological characterization of associational pathway terminating on dentate gyrus granule cells in the rat.
    Bekenstein JW; Lothman EW
    Hippocampus; 1991 Oct; 1(4):399-404. PubMed ID: 1669318
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Odor-induced fast waves in the dentate gyrus depend on a pathway through posterior cerebral cortex: effects of limbic lesions and trimethyltin.
    Heale VR; Vanderwolf CH
    Brain Res Bull; 1999 Nov; 50(4):291-9. PubMed ID: 10582527
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of cortisol on evoked potentials and recovery cycles in the rat hypothalamus.
    Feldman S; Dalith M; Conforti N
    J Neural Transm; 1973; 34(1):1-9. PubMed ID: 4351697
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.