These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 6291930)
21. ATP synthesis in Methanobacterium thermoautotrophicum coupled to CH4 formation from H2 and CO2 in the apparent absence of an electrochemical proton potential across the cytoplasmic membrane. Schönheit P; Beimborn DB Eur J Biochem; 1985 May; 148(3):545-50. PubMed ID: 2986965 [TBL] [Abstract][Full Text] [Related]
22. Further comments on the logic of the application of uncoupler- inhibitor titrations for the elucidation of the mechanisms of energy coupling. Pietrobon D; Caplan SR FEBS Lett; 1985 Nov; 192(1):119-22. PubMed ID: 2996936 [TBL] [Abstract][Full Text] [Related]
23. The phosphate potential maintained by mitochondria in State 4 is proportional to the proton-motive force. Woelders H; van der Zande WJ; Colen AM; Wanders RJ; van Dam K FEBS Lett; 1985 Jan; 179(2):278-82. PubMed ID: 2981706 [TBL] [Abstract][Full Text] [Related]
24. Thermodynamic limits to the ATP/site stoichiometries of oxidative phosphorylation by rat liver mitochondria. Lemasters JJ; Grunwald R; Emaus RK J Biol Chem; 1984 Mar; 259(5):3058-63. PubMed ID: 6321493 [TBL] [Abstract][Full Text] [Related]
25. Homeostasis of the protonmotive force in phosphorylating mitochondria. Duszyński J; Bogucka K; Wojtczak L Biochim Biophys Acta; 1984 Dec; 767(3):540-7. PubMed ID: 6095904 [TBL] [Abstract][Full Text] [Related]
26. The efficiencies of the component steps of oxidative phosphorylation. II. Experimental determination of the efficiencies in mitochondria and examination of the equivalence of membrane potential and pH gradient in phosphorylation. Jensen BD; Gunter KK; Gunter TE Arch Biochem Biophys; 1986 Jul; 248(1):305-23. PubMed ID: 3015029 [TBL] [Abstract][Full Text] [Related]
27. The rate of ATP-synthesis as a function of delta pH and delta psi catalyzed by the active, reduced H(+)-ATPase from chloroplasts. Junesch U; Gräber P FEBS Lett; 1991 Dec; 294(3):275-8. PubMed ID: 1661688 [TBL] [Abstract][Full Text] [Related]
28. Net adenosine triphosphate synthesis driven by an external electric field in rat liver mitochondria. Hamamoto T; Ohno K; Kagawa Y J Biochem; 1982 May; 91(5):1759-66. PubMed ID: 7096314 [TBL] [Abstract][Full Text] [Related]
29. Mitochondrial transmembrane pH and electrical gradients: evaluation of their energy relationships with respiratory rate and adenosine 5'-triphosphate synthesis. Wilson DF; Forman NG Biochemistry; 1982 Mar; 21(6):1438-44. PubMed ID: 7074098 [TBL] [Abstract][Full Text] [Related]
30. Analysis of mechanisms of free-energy coupling and uncoupling by inhibitor titrations: theory, computer modeling and experiments. Petronilli V; Azzone GF; Pietrobon D Biochim Biophys Acta; 1988 Mar; 932(3):306-24. PubMed ID: 2450579 [TBL] [Abstract][Full Text] [Related]
31. Measurement of Proton Leak in Isolated Mitochondria. Affourtit C; Wong HS; Brand MD Methods Mol Biol; 2018; 1782():157-170. PubMed ID: 29850999 [TBL] [Abstract][Full Text] [Related]
32. Membrane electricity as a convertible energy currency for the cell. Skulachev VP Can J Biochem; 1980 Mar; 58(3):161-75. PubMed ID: 6245772 [TBL] [Abstract][Full Text] [Related]
33. Proton electrochemical gradient and phosphate potential in mitochondria. Azzone GF; Pozzan T; Massari S Biochim Biophys Acta; 1978 Feb; 501(2):307-16. PubMed ID: 620018 [TBL] [Abstract][Full Text] [Related]
34. The effects of partial uncoupling upon the kinetics of ATP synthesis by vesicles from Paracoccus denitrificans and by bovine heart submitochondrial particles. Implications for the mechanism of the proton-translocating ATP synthase. McCarthy JE; Ferguson SJ Eur J Biochem; 1983 May; 132(2):425-31. PubMed ID: 6301834 [TBL] [Abstract][Full Text] [Related]
35. Characterisation of membrane vesicles from Paracoccus denitrificans and measurements of the effect of partial uncoupling on their thermodynamics of oxidative phosphorylation. McCarthy JE; Ferguson SJ Eur J Biochem; 1983 May; 132(2):417-24. PubMed ID: 6301833 [TBL] [Abstract][Full Text] [Related]
36. Inhibition by butylmalonate of proton influx in nonphosphorylating mitochondria. Fransvea E; La Piana G; Marzulli D; Lofrumento NE Arch Biochem Biophys; 1998 Jul; 355(1):93-100. PubMed ID: 9647671 [TBL] [Abstract][Full Text] [Related]
37. Kinetic limitations in the overall reaction of mitochondrial oxidative phosphorylation accounting for flux-dependent changes in the apparent delta GexP/delta mu H+ ratio. Kunz W; Gellerich FN; Schild L; Schönfeld P FEBS Lett; 1988 Jun; 233(1):17-21. PubMed ID: 2898384 [TBL] [Abstract][Full Text] [Related]
38. Conformational coupling in H+-pumps and ATP synthesis--its analysis with anisotropic inhibitors of energy transduction in oxidative phosphorylation. Higuti T Mol Cell Biochem; 1984; 61(1):37-61. PubMed ID: 6323966 [TBL] [Abstract][Full Text] [Related]
39. Double-inhibitor and uncoupler-inhibitor titrations. 2. Analysis with a nonlinear model of chemiosmotic energy coupling. Pietrobon D; Caplan SR Biochemistry; 1986 Nov; 25(23):7690-6. PubMed ID: 2948565 [TBL] [Abstract][Full Text] [Related]
40. Comparison of the energetics of lactose active transport: artificial versus enzyme-associated energy source. Chen LI; Chen CH Arch Biochem Biophys; 1986 Dec; 251(2):606-15. PubMed ID: 3026249 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]