BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 6291931)

  • 1. The structural isomerisation of human-muscle adenylate kinase as studied by 1H-nuclear magnetic resonance.
    Kalbitzer HR; Marquetant R; Rösch P; Schirmer RH
    Eur J Biochem; 1982 Sep; 126(3):531-6. PubMed ID: 6291931
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Complexes of yeast adenylate kinase and nucleotides investigated by 1H NMR.
    Vetter IR; Konrad M; Rösch P
    Biochemistry; 1991 Apr; 30(17):4137-42. PubMed ID: 1850618
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nucleotide and AP5A complexes of porcine adenylate kinase: A 1H and 19F NMR study.
    Rösch P; Klaus W; Auer M; Goody RS
    Biochemistry; 1989 May; 28(10):4318-25. PubMed ID: 2548574
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proton magnetic resonance spectra or porcine muscle adenylate kinase and substrate complexes.
    McDonald GG; Cohn M
    J Biol Chem; 1975 Sep; 250(17):6947-54. PubMed ID: 239953
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nuclear magnetic resonance studies of the nucleotide binding sites of porcine adenylate kinase.
    Smith GM; Mildvan AS
    Biochemistry; 1982 Nov; 21(24):6119-23. PubMed ID: 6295455
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthetic inhibitors of adenylate kinases in the assays for ATPases and phosphokinases.
    Feldhau P; Fröhlich T; Goody RS; Isakov M; Schirmer RH
    Eur J Biochem; 1975 Sep; 57(1):197-204. PubMed ID: 170110
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complexes of Escherichia coli adenylate kinase and nucleotides: 1H NMR studies of the nucleotide sites in solution.
    Vetter IR; Reinstein J; Rösch P
    Biochemistry; 1990 Aug; 29(32):7459-67. PubMed ID: 2223777
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Asymmetric binding of the inhibitor di(adenosine-5') pentaphosphate (Ap5A) to adenylate kinase.
    Nageswara Rao BD; Cohn M
    Proc Natl Acad Sci U S A; 1977 Dec; 74(12):5355-7. PubMed ID: 202953
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of adenylate kinase. Structural and functional roles of the conserved arginine-97 and arginine-132.
    Dahnke T; Shi Z; Yan H; Jiang RT; Tsai MD
    Biochemistry; 1992 Jul; 31(27):6318-28. PubMed ID: 1627570
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of adenylate kinase. Demonstration of a functional relationship between aspartate 93 and Mg2+ by site-directed mutagenesis and proton, phosphorus-31, and magnesium-25 NMR.
    Yan HG; Tsai MD
    Biochemistry; 1991 Jun; 30(22):5539-46. PubMed ID: 2036423
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solution structure of the 45-residue MgATP-binding peptide of adenylate kinase as examined by 2-D NMR, FTIR, and CD spectroscopy.
    Fry DC; Byler DM; Susi H; Brown EM; Kuby SA; Mildvan AS
    Biochemistry; 1988 May; 27(10):3588-98. PubMed ID: 2841970
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ATP-AMP phosphotransferase from Paracoccus denitrificans.
    Yeh SS; Tomasselli AG; Noda LH
    Eur J Biochem; 1983 Nov; 136(3):523-9. PubMed ID: 6315432
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Studies on tyrosine residues in porcine muscle adenylate kinase. Circular dichroism spectra and chemical modification with tetranitromethane.
    Yazawa M; Noda LH
    J Biol Chem; 1976 May; 251(10):3021-6. PubMed ID: 5449
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NMR studies of the AMP-binding site and mechanism of adenylate kinase.
    Fry DC; Kuby SA; Mildvan AS
    Biochemistry; 1987 Mar; 26(6):1645-55. PubMed ID: 3036205
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Properties of adenylate kinase after modification of Arg-97 by phenylglyoxal.
    Berghäuser J; Schirmer RH
    Biochim Biophys Acta; 1978 Dec; 537(2):428-35. PubMed ID: 215219
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Studies on adenosine triphosphate transphosphorylases. Human isoenzymes of adenylate kinase: isolation and physicochemical comparison of the crystalline human ATP-AMP transphosphorylases from muscle and liver.
    Kuby SA; Fleming G; Frischat A; Cress MC; Hamada M
    J Biol Chem; 1983 Feb; 258(3):1901-7. PubMed ID: 6296114
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystalline adenylate kinase from carp muscle.
    Noda L; Schulz GE; Von Zabern I
    Eur J Biochem; 1975 Feb; 51(1):229-35. PubMed ID: 164348
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A kinetic study of the photochemical inactivation of adenylate kinases of Mycobacterium marinum and bovine heart mitochondria.
    Batra PP; Skinner G
    Biochim Biophys Acta; 1990 Mar; 1038(1):52-9. PubMed ID: 2156572
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of 31P NMR spectra of enzyme-bound reactants and products of adenylate kinase using density matrix theory of chemical exchange.
    Vasavada KV; Kaplan JI; Nageswara Rao BD
    Biochemistry; 1984 Feb; 23(5):961-8. PubMed ID: 6324860
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studies on adenosine triphosphate transphosphorylases. Amino acid sequence of rabbit muscle ATP-AMP transphosphorylase.
    Kuby SA; Palmieri RH; Frischat A; Fischer AH; Wu LH; Maland L; Manship M
    Biochemistry; 1984 May; 23(11):2393-9. PubMed ID: 6089869
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.