BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 6292191)

  • 1. Coupling of voltage-sensitive sodium channel activity to stretch-induced amino acid transport in skeletal muscle in vitro.
    Vandenburgh HH; Kaufman S
    J Biol Chem; 1982 Nov; 257(22):13448-54. PubMed ID: 6292191
    [No Abstract]   [Full Text] [Related]  

  • 2. Comparative changes of levels of nitrendipine Ca2+ channels, of tetrodotoxin-sensitive Na+ channels and of ouabain-sensitive (Na+ + K+)-ATPase following denervation of rat and chick skeletal muscle.
    Schmid A; Kazazoglou T; Renaud JF; Lazdunski M
    FEBS Lett; 1984 Jun; 172(1):114-8. PubMed ID: 6329821
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stretch-induced growth of skeletal myotubes correlates with activation of the sodium pump.
    Vandenburgh HH; Kaufman S
    J Cell Physiol; 1981 Nov; 109(2):205-14. PubMed ID: 7298728
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition by alpha-amanitin of development of tetrodotoxin-sensitive spike induced by brain extract in cultured chick skeletal muscle cells.
    Kano M; Suzuki N
    Brain Res; 1982 Apr; 255(4):674-8. PubMed ID: 6280809
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pharmacologic properties of voltage-sensitive sodium channels in chick muscle fibers developing in vitro.
    Catterall WA
    Dev Biol; 1980 Jul; 78(1):222-30. PubMed ID: 6105110
    [No Abstract]   [Full Text] [Related]  

  • 6. Early signals in serum-induced increases in ouabain-sensitive Na(+)-K+ pump activity and in glucose transport in rat skeletal muscle are amiloride-sensitive.
    Brodie C; Sampson SR
    J Neurochem; 1993 Jun; 60(6):2247-53. PubMed ID: 8388036
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro model for stretch-induced hypertrophy of skeletal muscle.
    Vandenburgh H; Kaufman S
    Science; 1979 Jan; 203(4377):265-8. PubMed ID: 569901
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The appearance of voltage-sensitive Na+ channels during the in vitro differentiation of embryonic chick skeletal muscle cells.
    Frelin C; Lombet A; Vigne P; Romey G; Lazdunski M
    J Biol Chem; 1981 Dec; 256(23):12355-61. PubMed ID: 6271783
    [No Abstract]   [Full Text] [Related]  

  • 9. Electrical activity and cytosolic calcium regulate levels of tetrodotoxin-sensitive sodium channels in cultured rat muscle cells.
    Sherman SJ; Catterall WA
    Proc Natl Acad Sci U S A; 1984 Jan; 81(1):262-6. PubMed ID: 6320167
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of progressive starvation in vivo on amino acid transport and rubidium uptake in monolayer cultures of rat hepatocytes.
    Bellemann P
    J Biochem; 1981 Oct; 90(4):1101-15. PubMed ID: 6273392
    [No Abstract]   [Full Text] [Related]  

  • 11. Insulin and exercise stimulate muscle alpha-aminoisobutyric acid transport by a Na+-K+-ATPase independent pathway.
    Zorzano A; Balon TW; Goodman MN; Ruderman NB
    Biochem Biophys Res Commun; 1986 Feb; 134(3):1342-9. PubMed ID: 2418838
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Protein metabolism and sensitivity to tetrodotoxin of cardiomyoblasts cultured in vitro. Influence of insulin (author's transl)].
    Suignard G
    J Physiol (Paris); 1979; 75(7):733-40. PubMed ID: 232724
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ouabain-resistant, amiloride-sensitive Na+-K+ pumping activity and morphological changes are inducible.
    Epstein JA; Lechene C
    Am J Physiol; 1988 Jun; 254(6 Pt 1):C847-54. PubMed ID: 2454031
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of sodium channels during differentiation of chick skeletal muscle in culture. II. 22Na+ uptake and electrophysiological studies.
    Baumgold J; Parent JB; Spector I
    J Neurosci; 1983 May; 3(5):1004-13. PubMed ID: 6302233
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tetrodotoxin-insensitive sodium channels. Binding of polypeptide neurotoxins in primary cultures of rat muscle cells.
    Lawrence JC; Catterall WA
    J Biol Chem; 1981 Jun; 256(12):6223-9. PubMed ID: 6113245
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Na+ channels with binding sites of high and low affinity for tetrodotoxin in different excitable and non-excitable cells.
    Lombet A; Frelin C; Renaud JF; Lazdunski M
    Eur J Biochem; 1982 May; 124(1):199-203. PubMed ID: 6282588
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Some ionic factors in amino acid transport in contracting rat diaphragm.
    Wermers GW; Rusin L; Kolbeck RC; Cavert HM; Quello CF; Visscher MB
    Proc Soc Exp Biol Med; 1973 Oct; 144(1):277-80. PubMed ID: 4771571
    [No Abstract]   [Full Text] [Related]  

  • 18. Amino acid transport in bone. Evidence for separate transport systems for neutral amino and imino acids.
    Finerman GA; Rosenberg LE
    J Biol Chem; 1966 Apr; 241(7):1487-93. PubMed ID: 5946610
    [No Abstract]   [Full Text] [Related]  

  • 19. Single-channel studies of TTX-sensitive and TTX-resistant sodium channels in developing rat muscle reveal different open channel properties.
    Weiss RE; Horn R
    Ann N Y Acad Sci; 1986; 479():152-61. PubMed ID: 2433988
    [No Abstract]   [Full Text] [Related]  

  • 20. Sodium channel and sodium pump in normal and pathological muscles from patients with myotonic muscular dystrophy and lower motor neuron impairment.
    Desnuelle C; Lombet A; Serratrice G; Lazdunski M
    J Clin Invest; 1982 Feb; 69(2):358-67. PubMed ID: 6276440
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.