BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 6292211)

  • 1. Isolation of plasma membrane vesicles from rabbit skeletal muscle and their use in ion transport studies.
    Seiler S; Fleischer S
    J Biol Chem; 1982 Nov; 257(22):13862-71. PubMed ID: 6292211
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolation of basolateral and brush-border membranes from the rabbit kidney cortex. Vesicle integrity and membrane sidedness of the basolateral fraction.
    Boumendil-Podevin EF; Podevin RA
    Biochim Biophys Acta; 1983 Oct; 735(1):86-94. PubMed ID: 6313056
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biochemical characterization, integrity, and sidedness of purified skeletal muscle triads.
    Mitchell RD; Volpe P; Palade P; Fleischer S
    J Biol Chem; 1983 Aug; 258(16):9867-77. PubMed ID: 6136506
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isolation and characterization of plasma membranes from bovine carotid arteries.
    Sharma RV; Bhalla RC
    Am J Physiol; 1986 Jan; 250(1 Pt 1):C65-75. PubMed ID: 3002186
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Passive rubidium fluxes mediated by Na-K-ATPase reconstituted into phospholipid vesicles when ATP- and phosphate-free.
    Karlish SJ; Stein WD
    J Physiol; 1982 Jul; 328():295-316. PubMed ID: 6290646
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transverse tubules from frog skeletal muscle. Purification and properties of vesicles sealed with the inside-out orientation.
    Hidalgo C; Parra C; Riquelme G; Jaimovich E
    Biochim Biophys Acta; 1986 Feb; 855(1):79-88. PubMed ID: 3002474
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transverse tubule Mg(2+)-ATPase of skeletal muscle. Evidence for extracellular orientation of the chicken and rabbit enzymes.
    Saborido A; Moro G; Megías A
    J Biol Chem; 1991 Dec; 266(34):23490-8. PubMed ID: 1660476
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Effect of cardenolids and sodium ion gradient on ATP-dependent Ca2+ accumulation in cardiac sarcolemmal vesicles].
    Preobrazhenskiĭ AN; Kupriianov VV; Saks VA; Grosse R; Spitzer E
    Biokhimiia; 1982 Jan; 47(1):126-36. PubMed ID: 6279179
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms of Ca2+ transport in plasma membrane vesicles prepared from cultured pituitary cells. II. (Ca2+ + Mg2+)-ATPase-dependent Ca2+ transport activity.
    Barros F; Kaczorowski GJ
    J Biol Chem; 1984 Aug; 259(15):9404-10. PubMed ID: 6146614
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation and characterization of longitudinal tubules of sarcoplasmic reticulum from fast skeletal muscle.
    Chu A; Saito A; Fleischer S
    Arch Biochem Biophys; 1987 Oct; 258(1):13-23. PubMed ID: 2444161
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Local anaesthetic bupivacaine alters function of sarcoplasmic reticulum and sarcolemmal vesicles from rabbit masseter muscle.
    Takahashi S
    Pharmacol Toxicol; 1994; 75(3-4):119-28. PubMed ID: 7800651
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mass isolation of cell surface membrane fragments from pigeon heart.
    Misselwitz HJ; Will H; Schulze W; Will-Shahab L; Wollenberger A
    Biochim Biophys Acta; 1979 May; 553(2):197-212. PubMed ID: 221021
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rabbit distal colon epithelium: I. Isolation and characterization of basolateral plasma membrane vesicles from surface and crypt cells.
    Wiener H; Turnheim K; van Os CH
    J Membr Biol; 1989 Sep; 110(2):147-62. PubMed ID: 2553975
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Separation of vesicles of cardiac sarcolemma from vesicles of cardiac sarcoplasmic reticulum. Comparative biochemical analysis of component activities.
    Jones LR; Besch HR; Fleming JW; McConnaughey MM; Watanabe AM
    J Biol Chem; 1979 Jan; 254(2):530-9. PubMed ID: 216677
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Purification of cardiac sarcolemmal vesicles: high sodium pump content and ATP-dependent, calmodulin-activated calcium uptake.
    Kuwayama H; Kanazawa T
    J Biochem; 1982 Apr; 91(4):1419-26. PubMed ID: 6284727
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vasopressin, insulin and peroxide(s) of vanadate (pervanadate) influence Na+ transport mediated by (Na+, K+)ATPase or Na+/H+ exchanger of rat liver plasma membrane vesicles.
    Jakubowski J; Jakob A
    Eur J Biochem; 1990 Oct; 193(2):541-9. PubMed ID: 2171938
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Na+/Ca2+ countertransport in plasma membrane of rat pancreatic acinar cells.
    Bayerdörffer E; Haase W; Schulz I
    J Membr Biol; 1985; 87(2):107-19. PubMed ID: 2416927
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Caclium uptake and associated adenosine triphosphatase activity in fragmented sarcoplasmic reticulum. Requirement for potassium ions.
    Duggan PF
    J Biol Chem; 1977 Mar; 252(5):1620-7. PubMed ID: 14156
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calcium transport and Ca2+-ATPase activity in ram spermatozoa plasma membrane vesicles.
    Breitbart H; Stern B; Rubinstein S
    Biochim Biophys Acta; 1983 Mar; 728(3):349-55. PubMed ID: 6297578
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Delivery of ion pumps from exogenous membrane-rich sources into mammalian red blood cells.
    Munzer JS; Silvius JR; Blostein R
    J Biol Chem; 1992 Mar; 267(8):5202-10. PubMed ID: 1312086
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.