These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 6292318)

  • 1. Decomposing potassium peroxychromate produces hydroxyl radical (.OH) that can peroxidize the unsaturated fatty acids of phospholipid dispersions.
    Edwards JC; Quinn PJ
    J Lipid Res; 1982 Sep; 23(7):994-1000. PubMed ID: 6292318
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The structure of unsaturated lipid dispersions in aqueous systems influences susceptibility to oxidation.
    Edwards JC; Quinn PJ
    Biochim Biophys Acta; 1982 Mar; 710(3):502-5. PubMed ID: 7074127
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Superoxide-dependent lipid peroxidation. Problems with the use of catalase as a specific probe for fenton-derived hydroxyl radicals.
    Gutteridge JM; Beard AP; Quinlan GJ
    Biochem Biophys Res Commun; 1983 Dec; 117(3):901-7. PubMed ID: 6320819
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lipid peroxidation initiated by superoxide-dependent hydroxyl radicals using complexed iron and hydrogen peroxide.
    Gutteridge JM
    FEBS Lett; 1984 Jul; 172(2):245-9. PubMed ID: 6086389
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An ESR study on lipid peroxidation process. Formation of hydrogen atoms and hydroxyl radicals.
    Makino K; Imaishi H; Morinishi S; Takeuchi T; Fujita Y
    Biochem Biophys Res Commun; 1986 Nov; 141(1):381-6. PubMed ID: 3026379
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The requirement for iron (III) in the initiation of lipid peroxidation by iron (II) and hydrogen peroxide.
    Minotti G; Aust SD
    J Biol Chem; 1987 Jan; 262(3):1098-104. PubMed ID: 3027077
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The generation of hydroxyl and alkoxyl radicals from the interaction of ferrous bipyridyl with peroxides.
    Winston GW; Harvey W; Berl L; Cederbaum AI
    Biochem J; 1983 Nov; 216(2):415-21. PubMed ID: 6318737
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The metal-mediated formation of hydroxyl radical by aqueous extracts of cigarette tar.
    Cosgrove JP; Borish ET; Church DF; Pryor WA
    Biochem Biophys Res Commun; 1985 Oct; 132(1):390-6. PubMed ID: 2998360
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fenton reactions in lipid phases: iron solubility, .OH production, and initiation of lipid oxidation.
    Schaich KM; Borg DC
    Basic Life Sci; 1988; 49():153-6. PubMed ID: 2854979
    [No Abstract]   [Full Text] [Related]  

  • 10. Generation of free radicals from hydrogen peroxide and lipid hydroperoxides in the presence of Cr(III).
    Shi X; Dalal NS; Kasprzak KS
    Arch Biochem Biophys; 1993 Apr; 302(1):294-9. PubMed ID: 8385901
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ferritin and superoxide-dependent lipid peroxidation.
    Thomas CE; Morehouse LA; Aust SD
    J Biol Chem; 1985 Mar; 260(6):3275-80. PubMed ID: 2982854
    [TBL] [Abstract][Full Text] [Related]  

  • 12. One-electron reduction of chromate by NADPH-dependent glutathione reductase.
    Shi XL; Dalal NS
    J Inorg Biochem; 1990 Sep; 40(1):1-12. PubMed ID: 2178178
    [TBL] [Abstract][Full Text] [Related]  

  • 13. EPR detection of lipid-derived free radicals from PUFA, LDL, and cell oxidations.
    Qian SY; Wang HP; Schafer FQ; Buettner GR
    Free Radic Biol Med; 2000 Sep; 29(6):568-79. PubMed ID: 11025200
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Liposomal membranes. XX. Autoxidation of unsaturated fatty acids in liposomal membranes.
    Sunamoto J; Baba Y; Iwamoto K; Kondo H
    Biochim Biophys Acta; 1985 Jan; 833(1):144-50. PubMed ID: 4038459
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Superoxide and peroxyl radical generation from the reduction of polyunsaturated fatty acid hydroperoxides by soybean lipoxygenase.
    Chamulitrat W; Hughes MF; Eling TE; Mason RP
    Arch Biochem Biophys; 1991 Oct; 290(1):153-9. PubMed ID: 1654862
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The production of oxygen-centered radicals by bacillus-Calmette-Guerin-activated macrophages. An electron paramagnetic resonance study of the response to phorbol myristate acetate.
    Hume DA; Gordon S; Thornalley PJ; Bannister JV
    Biochim Biophys Acta; 1983 Oct; 763(3):245-50. PubMed ID: 6313069
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Importance of hydroxyl radical in the vanadium-stimulated oxidation of NADH.
    Keller RJ; Coulombe RA; Sharma RP; Grover TA; Piette LH
    Free Radic Biol Med; 1989; 6(1):15-22. PubMed ID: 2536340
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reaction of vanadyl with hydrogen peroxide. An ESR and spin trapping study.
    Carmichael AJ
    Free Radic Res Commun; 1990; 10(1-2):37-45. PubMed ID: 2165984
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production of hydroxyl-free radical by reaction of hydrogen peroxide with N-methyl-N'-nitro-N-nitrosoguanidine.
    Mikuni T; Tatsuta M; Kamachi M
    Cancer Res; 1985 Dec; 45(12 Pt 1):6442-5. PubMed ID: 2998601
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Superoxide dismutase-like activities of copper(II) complexes tested in serum.
    Huber KR; Sridhar R; Griffith EH; Amma EL; Roberts J
    Biochim Biophys Acta; 1987 Sep; 915(2):267-76. PubMed ID: 2820500
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.