These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 6292334)

  • 1. Ca2+-dependent changes in cyclic GMP levels are not correlated with opening and closing of the light-dependent permeability of toad photoreceptors.
    Woodruff ML; Fain GL
    J Gen Physiol; 1982 Oct; 80(4):537-55. PubMed ID: 6292334
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Properties of ion channels closed by light and opened by guanosine 3',5'-cyclic monophosphate in toad retinal rods.
    Matthews G; Watanabe S
    J Physiol; 1987 Aug; 389():691-715. PubMed ID: 2445983
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Light-mediated cyclic GMP hydrolysis controls important aspects of kinetics of retinal rod voltage response.
    Miller WH; Laughlin SB
    Biophys Struct Mech; 1983; 9(4):269-76. PubMed ID: 6303467
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Guanosine 3',5'-cyclic monophosphate and the in vitro physiology of frog photoreceptor membranes.
    Woodruff ML; Bownds D; Green SH; Morrisey JL; Shedlovsky A
    J Gen Physiol; 1977 May; 69(5):667-79. PubMed ID: 194013
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activation of single ion channels from toad retinal rod inner segments by cyclic GMP: concentration dependence.
    Matthews G; Watanabe S
    J Physiol; 1988 Sep; 403():389-405. PubMed ID: 2473194
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amplitude, kinetics, and reversibility of a light-induced decrease in guanosine 3',5'-cyclic monophosphate in frog photoreceptor membranes.
    Woodruff ML; Bownds MD
    J Gen Physiol; 1979 May; 73(5):629-53. PubMed ID: 222877
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cyclic GMP levels and membrane current during onset, recovery, and light adaptation of the photoresponse of detached frog photoreceptors.
    Cote RH; Nicol GD; Burke SA; Bownds MD
    J Biol Chem; 1989 Sep; 264(26):15384-91. PubMed ID: 2549061
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of calcium on guanosine 3',5'-cyclic monophosphate levels in frog rod outer segments.
    Polans AS; Kawamura S; Bownds MD
    J Gen Physiol; 1981 Jan; 77(1):41-8. PubMed ID: 6259273
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adapting lights and lowered extracellular free calcium desensitize toad photoreceptors by differing mechanisms.
    Greenblatt RE
    J Physiol; 1983 Mar; 336():579-605. PubMed ID: 6410053
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cyclic GMP directly regulates a cation conductance in membranes of bovine rods by a cooperative mechanism.
    Koch KW; Kaupp UB
    J Biol Chem; 1985 Jun; 260(11):6788-800. PubMed ID: 2581960
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cyclic GMP-activated channels of rod photoreceptors show neither fast nor slow desensitization.
    Watanabe S; Matthews G
    Vis Neurosci; 1990 May; 4(5):481-7. PubMed ID: 1702987
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physiological evidence that light-mediated decrease in cyclic GMP is an intermediary process in retinal rod transduction.
    Miller WH
    J Gen Physiol; 1982 Jul; 80(1):103-23. PubMed ID: 6288836
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Light-dependent ion influx into toad photoreceptors.
    Woodruff ML; Fain GL; Bastian BL
    J Gen Physiol; 1982 Oct; 80(4):517-36. PubMed ID: 6183392
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-channel recordings demonstrate that cGMP opens the light-sensitive ion channel of the rod photoreceptor.
    Matthews G
    Proc Natl Acad Sci U S A; 1987 Jan; 84(1):299-302. PubMed ID: 2432606
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Permeability and interaction of Ca2+ with cGMP-gated ion channels differ in retinal rod and cone photoreceptors.
    Picones A; Korenbrot JI
    Biophys J; 1995 Jul; 69(1):120-7. PubMed ID: 7545443
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differences in calcium homeostasis between retinal rod and cone photoreceptors revealed by the effects of voltage on the cGMP-gated conductance in intact cells.
    Miller JL; Korenbrot JI
    J Gen Physiol; 1994 Nov; 104(5):909-40. PubMed ID: 7876828
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in cGMP concentration correlate with some, but not all, aspects of the light-regulated conductance of frog rod photoreceptors.
    Cote RH; Nicol GD; Burke SA; Bownds MD
    J Biol Chem; 1986 Oct; 261(28):12965-75. PubMed ID: 3020017
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrical and adaptive properties of rod photoreceptors in Bufo marinus. II. Effects of cyclic nucleotides and prostaglandins.
    Lipton SA; Rasmussen H; Dowling JE
    J Gen Physiol; 1977 Dec; 70(6):771-91. PubMed ID: 201724
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Incorporation of a retinal rod cGMP-dependent conductance into planar bilayers.
    Tanaka JC; Furman RE; Cobbs WH; Mueller P
    Proc Natl Acad Sci U S A; 1987 Feb; 84(3):724-8. PubMed ID: 3027699
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Light does not induce an increase in cyclic-GMP content of squid or Limulus photoreceptors.
    Brown JE; Faddis M; Combs A
    Exp Eye Res; 1992 Mar; 54(3):403-10. PubMed ID: 1325919
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.