These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 6292375)
1. Effects of temperature on identified central neurons that control jumping in the grasshopper. Abrams TW; Pearson KG J Neurosci; 1982 Nov; 2(11):1538-53. PubMed ID: 6292375 [TBL] [Abstract][Full Text] [Related]
3. Integration of nonphaselocked exteroceptive information in the control of rhythmic flight in the locust. Reichert H; Rowell CH J Neurophysiol; 1985 May; 53(5):1201-18. PubMed ID: 2987432 [TBL] [Abstract][Full Text] [Related]
4. Neural circuits for jumping in the locust. Pearson KG J Physiol (Paris); 1982-1983; 78(8):765-71. PubMed ID: 6315926 [TBL] [Abstract][Full Text] [Related]
5. Effects of temperature on a central synapse between identified motor neurons in the locust. Burrows M J Comp Physiol A; 1989 Sep; 165(5):687-95. PubMed ID: 2795499 [TBL] [Abstract][Full Text] [Related]
6. Electrophysiological properties of identified classes of lamprey spinal neurons. Buchanan JT J Neurophysiol; 1993 Dec; 70(6):2313-25. PubMed ID: 8120584 [TBL] [Abstract][Full Text] [Related]
7. Dynamics of neurons controlling movements of a locust hind leg. III. Extensor tibiae motor neurons. Newland PL; Kondoh Y J Neurophysiol; 1997 Jun; 77(6):3297-310. PubMed ID: 9212276 [TBL] [Abstract][Full Text] [Related]
8. Projections of the wing stretch receptors to central flight neurons in the locust. Reye DN; Pearson KG J Neurosci; 1987 Aug; 7(8):2476-87. PubMed ID: 3612248 [TBL] [Abstract][Full Text] [Related]
9. Quasi-reversible photo-axotomy used to investigate the role of extensor muscle tension in controlling the kick motor programme of grasshoppers. Heitler WJ Eur J Neurosci; 1995 May; 7(5):981-92. PubMed ID: 7613633 [TBL] [Abstract][Full Text] [Related]
10. Decorrelating actions of Renshaw interneurons on the firing of spinal motoneurons within a motor nucleus: a simulation study. Maltenfort MG; Heckman CJ; Rymer WZ J Neurophysiol; 1998 Jul; 80(1):309-23. PubMed ID: 9658052 [TBL] [Abstract][Full Text] [Related]
11. Parallel processing of proprioceptive signals by spiking local interneurons and motor neurons in the locust. Burrows M J Neurosci; 1987 Apr; 7(4):1064-80. PubMed ID: 3572474 [TBL] [Abstract][Full Text] [Related]
12. Glutamatergic central nervous transmission in locusts. Sombati S; Hoyle G J Neurobiol; 1984 Nov; 15(6):507-16. PubMed ID: 6097646 [TBL] [Abstract][Full Text] [Related]
13. Plasticity of synaptic connections in sensory-motor pathways of the adult locust flight system. Wolf H; Büschges A J Neurophysiol; 1997 Sep; 78(3):1276-84. PubMed ID: 9310419 [TBL] [Abstract][Full Text] [Related]
14. Heat shock protects synaptic transmission in flight motor circuitry of locusts. Dawson-Scully K; Meldrum Robertson R Neuroreport; 1998 Aug; 9(11):2589-93. PubMed ID: 9721938 [TBL] [Abstract][Full Text] [Related]
15. Alteration of bursting properties in interneurons during locust flight. Ramirez JM; Pearson KG J Neurophysiol; 1993 Nov; 70(5):2148-60. PubMed ID: 8294976 [TBL] [Abstract][Full Text] [Related]
16. Firing patterns and synaptic potentials of identified giant aspiny interneurons in the rat neostriatum. Wilson CJ; Chang HT; Kitai ST J Neurosci; 1990 Feb; 10(2):508-19. PubMed ID: 2303856 [TBL] [Abstract][Full Text] [Related]
17. Amplification and linear summation of synaptic effects on motoneuron firing rate. Prather JF; Powers RK; Cope TC J Neurophysiol; 2001 Jan; 85(1):43-53. PubMed ID: 11152704 [TBL] [Abstract][Full Text] [Related]
18. Postural changes alter synaptic interactions between nonspiking interneurons and motor neurons of the locust. Siegler MV J Neurophysiol; 1981 Aug; 46(2):310-23. PubMed ID: 6267215 [No Abstract] [Full Text] [Related]