These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 6293312)

  • 1. Interpretation and use of electrical equivalent circuits in studies of epithelial tissues.
    Helman SI; Thompson SM
    Am J Physiol; 1982 Dec; 243(6):F519-31. PubMed ID: 6293312
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relations between chord and slope conductances and equivalent electromotive forces.
    Thompson SM
    Am J Physiol; 1986 Feb; 250(2 Pt 1):C333-9. PubMed ID: 3953785
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of cellular and paracellular conductance patterns on epithelial transport and metabolism.
    Essig A
    Biophys J; 1982 May; 38(2):143-52. PubMed ID: 6284264
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemical potentials in frog skin: inferences for electrical and mechanistic models.
    Helman SI
    Fed Proc; 1979 Dec; 38(13):2743-50. PubMed ID: 510562
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of ionophores in epithelia: characterizing membrane properties.
    Lewis SA; Wills NK
    Methods Enzymol; 1989; 171():715-36. PubMed ID: 2556626
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Model of ion transport regulation in chloride-secreting airway epithelial cells. Integrated description of electrical, chemical, and fluorescence measurements.
    Hartmann T; Verkman AS
    Biophys J; 1990 Aug; 58(2):391-401. PubMed ID: 1698471
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Substrate-dependent expression of Na+ transport and shunt conductance in A6 epithelia.
    Helman SI; Liu X
    Am J Physiol; 1997 Aug; 273(2 Pt 1):C434-41. PubMed ID: 9277341
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of equivalent electrical circuit models to study of sodium transport across epithelial tissues.
    Schultz SG
    Fed Proc; 1979 May; 38(6):2024-9. PubMed ID: 437144
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic theory model for ion movement through biological membranes. 3. Steady-state electrical properties with solution asymmetry.
    Mackey MC; McNeel ML
    Biophys J; 1971 Aug; 11(8):664-74. PubMed ID: 5116582
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microelectrode studies of Necturus antral mucosa. II. Equivalent circuit analysis.
    Ashley SW; Soybel DI; De L; Cheung LY
    Am J Physiol; 1985 May; 248(5 Pt 1):G574-9. PubMed ID: 3993785
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic theory model for ion movement through biological membranes. I. Field-dependent conductances in the presence of solution symmetry.
    Mackey MC
    Biophys J; 1971 Jan; 11(1):75-90. PubMed ID: 5539001
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolated perfused salamander proximal tubule. II. Monovalent ion replacement and rheogenic transport.
    Sackin H; Boulpaep EL
    Am J Physiol; 1981 Nov; 241(5):F540-55. PubMed ID: 7304748
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transport properties of the lens.
    Mathias RT; Rae JL
    Am J Physiol; 1985 Sep; 249(3 Pt 1):C181-90. PubMed ID: 2994483
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ionic channels in epithelial cell membranes.
    Van Driessche W; Zeiske W
    Physiol Rev; 1985 Oct; 65(4):833-903. PubMed ID: 2414790
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ENaC-CFTR interactions: the role of electrical coupling of ion fluxes explored in an epithelial cell model.
    Horisberger JD
    Pflugers Arch; 2003 Jan; 445(4):522-8. PubMed ID: 12548399
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Voltage modulation of Na+/K+ transport in human erythrocytes.
    Teissie J; Yow Tsong T
    J Physiol (Paris); 1981 May; 77(9):1043-53. PubMed ID: 6286955
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Capacitative transients in voltage-clamped epithelia.
    Garcia-Diaz JF; Essig A
    Biophys J; 1985 Sep; 48(3):519-23. PubMed ID: 4041541
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A rapid method for the evaluation of the ionic permeabilities across epithelial cell membranes.
    Movileanu L
    J Biochem Biophys Methods; 1999 Feb; 38(3):209-15. PubMed ID: 10100952
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct current electrical measurement in epithelia: steady-state and transient analysis.
    Rehm WS; Schwartz M; Carrasquer G
    Methods Enzymol; 1989; 171():607-28. PubMed ID: 2593854
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Equivalent electrical circuit models and the study of Na transport across epithelia: nonsteady-state current-voltage relations.
    Schultz SG; Thompson SM; Suzuki Y
    Fed Proc; 1981 Aug; 40(10):2443-9. PubMed ID: 7262329
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.