These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 6293469)

  • 1. Superoxide-dependent formation of hydroxyl radicals and lipid peroxidation in the presence of iron salts. Detection of 'catalytic' iron and anti-oxidant activity in extracellular fluids.
    Gutteridge JM; Rowley DA; Halliwell B
    Biochem J; 1982 Sep; 206(3):605-9. PubMed ID: 6293469
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Superoxide-dependent formation of hydroxyl radicals in the presence of iron salts. Detection of 'free' iron in biological systems by using bleomycin-dependent degradation of DNA.
    Gutteridge JM; Rowley DA; Halliwell B
    Biochem J; 1981 Oct; 199(1):263-5. PubMed ID: 6175315
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation of hydroxyl radicals from hydrogen peroxide and iron salts by superoxide- and ascorbate-dependent mechanisms: relevance to the pathology of rheumatoid disease.
    Rowley DA; Halliwell B
    Clin Sci (Lond); 1983 Jun; 64(6):649-53. PubMed ID: 6301745
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Free oxygen radiacals and kidney diseases--part I].
    Sakac V; Sakac M
    Med Pregl; 2000; 53(9-10):463-74. PubMed ID: 11320727
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of iron in oxygen radical mediated lipid peroxidation.
    Minotti G; Aust SD
    Chem Biol Interact; 1989; 71(1):1-19. PubMed ID: 2550151
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Iron and oxygen radicals in tissue damage: implications for the neuronal ceroid lipofuscinoses.
    Gutteridge JM; Westermarck T; Santavuori P
    Acta Neurol Scand; 1983 Dec; 68(6):365-70. PubMed ID: 6666544
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Peroxidation of liposomes promoted by human polymorphonuclear leucocytes.
    Carlin G; Arfors KE
    J Free Radic Biol Med; 1985; 1(5-6):437-42. PubMed ID: 3018066
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of the iron-catalysed formation of hydroxyl radicals from superoxide and of lipid peroxidation by desferrioxamine.
    Gutteridge JM; Richmond R; Halliwell B
    Biochem J; 1979 Nov; 184(2):469-72. PubMed ID: 230833
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Superoxide-dependent formation of hydroxyl radicals in the presence of iron salts is a feasible source of hydroxy radicals in vivo.
    Halliwell B
    Biochem J; 1982 Aug; 205(2):461-3. PubMed ID: 6291510
    [No Abstract]   [Full Text] [Related]  

  • 10. Reactions of adriamycin with microsomal iron and lipids.
    Minotti G
    Free Radic Res Commun; 1989; 7(3-6):143-8. PubMed ID: 2555273
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Superoxide dependent iron release from ferritin in inflammatory diseases.
    Biemond P; Swaak AJ; van Eijk HG; Koster JF
    Free Radic Biol Med; 1988; 4(3):185-98. PubMed ID: 2833431
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lipid peroxidation initiated by superoxide-dependent hydroxyl radicals using complexed iron and hydrogen peroxide.
    Gutteridge JM
    FEBS Lett; 1984 Jul; 172(2):245-9. PubMed ID: 6086389
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Singlet oxygen production associated with enzyme-catalyzed lipid peroxidation in liver microsomes.
    King MM; Lai EK; McCay PB
    J Biol Chem; 1975 Aug; 250(16):6496-502. PubMed ID: 169247
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bleomycin-detectable iron in knee-joint synovial fluid from arthritic patients and its relationship to the extracellular antioxidant activities of caeruloplasmin, transferrin and lactoferrin.
    Gutteridge JM
    Biochem J; 1987 Jul; 245(2):415-21. PubMed ID: 2444216
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phagocytes, O2 reduction, and hydroxyl radical.
    Cohen MS; Britigan BE; Hassett DJ; Rosen GM
    Rev Infect Dis; 1988; 10(6):1088-96. PubMed ID: 2849797
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tetravalent vanadium releases ferritin iron which stimulates vanadium-dependent lipid peroxidation.
    Monteiro HP; Winterbourn CC; Stern A
    Free Radic Res Commun; 1991; 12-13 Pt 1():125-9. PubMed ID: 1649080
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of superoxide and hydroxyl radicals in phospholipid peroxidation catalysed by iron salts.
    Gutteridge JM
    FEBS Lett; 1982 Dec; 150(2):454-8. PubMed ID: 6297981
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Initiation of lipid peroxidation in biological systems.
    Kanner J; German JB; Kinsella JE
    Crit Rev Food Sci Nutr; 1987; 25(4):317-64. PubMed ID: 3304843
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Xanthine oxidase- and iron-dependent lipid peroxidation.
    Miller DM; Grover TA; Nayini N; Aust SD
    Arch Biochem Biophys; 1993 Feb; 301(1):1-7. PubMed ID: 8382902
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bleomycin-iron damage to DNA with formation of 8-hydroxydeoxyguanosine and base propenals. Indications that xanthine oxidase generates superoxide from DNA degradation products.
    Gutteridge JM; West M; Eneff K; Floyd RA
    Free Radic Res Commun; 1990; 10(3):159-65. PubMed ID: 1697821
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.