BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 6293488)

  • 1. Differences in superoxide production by nonmigrating and migrating human monocyte subpopulations.
    Harvath L; Lazdins JK; Alteri E; Leonard EJ
    Biochem Biophys Res Commun; 1982 Sep; 108(1):392-8. PubMed ID: 6293488
    [No Abstract]   [Full Text] [Related]  

  • 2. Dissociation by piroxicam of degranulation and superoxide anion generation from decrements in chlortetracycline fluorescence of activated human neutrophils.
    Edelson HS; Kaplan HB; Korchak HM; Smolen JE; Weissmann G
    Biochem Biophys Res Commun; 1982 Jan; 104(1):247-53. PubMed ID: 6280690
    [No Abstract]   [Full Text] [Related]  

  • 3. Differences in the ability of human peripheral blood monocytes and in vitro monocyte-derived macrophages to produce superoxide anion: studies with cells from normals and patients with chronic granulomatous disease.
    Musson RA; McPhail LC; Shafran H; Johnston RB
    J Reticuloendothel Soc; 1982 Mar; 31(3):261-6. PubMed ID: 6281432
    [No Abstract]   [Full Text] [Related]  

  • 4. Prostaglandin E1 and prostaglandin I2 modulation of superoxide production by human neutrophils.
    Fantone JC; Kinnes DA
    Biochem Biophys Res Commun; 1983 Jun; 113(2):506-12. PubMed ID: 6307290
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of ubiquinone-50 as the major methylated nonpolar lipid in human monocytes. Regulation of its biosynthesis via methionine-dependent pathways and relationship to superoxide production.
    Bougnoux P; Bonvini E; Stevenson HC; Markey S; Zatz M; Hoffman T
    J Biol Chem; 1983 Apr; 258(7):4339-44. PubMed ID: 6300082
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibitors of monocyte responses to chemotaxins are associated with human neoplasms.
    Snyderman R; Cianciolo G
    Adv Exp Med Biol; 1982; 155():343-52. PubMed ID: 7158488
    [No Abstract]   [Full Text] [Related]  

  • 7. Surface-reactive stimuli selectively increase protein phosphorylation in human neutrophils.
    Schneider C; Zanetti M; Romeo D
    FEBS Lett; 1981 May; 127(1):4-8. PubMed ID: 7250373
    [No Abstract]   [Full Text] [Related]  

  • 8. Mechanisms of lysosomal enzyme secretion by human U-937 monocytes.
    Leoni P; Dean RT
    Exp Cell Biol; 1983; 51(3):148-57. PubMed ID: 6852343
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selective defect in human neutrophil superoxide anion generation elicited by the chemoattractant N-formylmethionylleucylphenylalanine in pregnancy.
    Cotton DJ; Seligmann B; O'Brien WF; Gallin JI
    J Infect Dis; 1983 Aug; 148(2):194-9. PubMed ID: 6310000
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemotaxis of endothelial cells to formyl-methionyl-leucyl-phenylalanine.
    Hoover RL; Wright TC
    Microvasc Res; 1983 Jul; 26(1):122-5. PubMed ID: 6888282
    [No Abstract]   [Full Text] [Related]  

  • 11. Endogenous phospholipid metabolism in stimulated neutrophils differential activation by FMLP and PMA.
    Serhan CN; Broekman MJ; Korchak HM; Marcus AJ; Weissmann G
    Biochem Biophys Res Commun; 1982 Aug; 107(3):951-8. PubMed ID: 6814433
    [No Abstract]   [Full Text] [Related]  

  • 12. A rapid densitometric microassay for nitroblue tetrazolium reduction and application of the microassay to macrophages.
    Pick E; Charon J; Mizel D
    J Reticuloendothel Soc; 1981 Dec; 30(6):581-93. PubMed ID: 6281430
    [No Abstract]   [Full Text] [Related]  

  • 13. Monocyte aggregation and superoxide anion release in response to formyl-methionyl-leucyl-phenylalanine (FMLP) and platelet-activating factor (PAF).
    Yasaka T; Boxer LA; Baehner RL
    J Immunol; 1982 May; 128(5):1939-44. PubMed ID: 6278021
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of human polymorphonuclear leukocyte superoxide release by cellular responses to chemotactic peptides.
    English D; Roloff JS; Lukens JN
    J Immunol; 1981 Jan; 126(1):165-71. PubMed ID: 6256437
    [No Abstract]   [Full Text] [Related]  

  • 15. Evidence for 5, 12-dihydroxy-6,8,10,14-eicosatetraenoate as a mediator of human neutrophil aggregation.
    O'Flaherty JT; Hammett MJ; Shewmake TB; Wykle RL; Love SH; McCall CE; Thomas MJ
    Biochem Biophys Res Commun; 1981 Nov; 103(2):552-8. PubMed ID: 6277309
    [No Abstract]   [Full Text] [Related]  

  • 16. The roles of degranulation and superoxide anion generation in neutrophil aggregation.
    Kaplan HB; Edelson HS; Friedman R; Weissmann G
    Biochim Biophys Acta; 1982 Sep; 721(1):55-63. PubMed ID: 6289915
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transmembrane potential changes associated with superoxide release from human granulocytes.
    Jones GS; VanDyke K; Castranova V
    J Cell Physiol; 1981 Jan; 106(1):75-83. PubMed ID: 6259186
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Production of superoxide by neutrophils.
    West MY; Sinclair DS; Southwell-Keely PT
    Experientia; 1983 Jan; 39(1):61-2. PubMed ID: 6297957
    [TBL] [Abstract][Full Text] [Related]  

  • 19. N-formylmethionyl-leucyl-[3H]phenylalanine binding, superoxide release, and chemotactic responses of human blood monocytes that repopulate the circulation during leukapheresis.
    Alteri E; Leonard EJ
    Blood; 1983 Oct; 62(4):918-23. PubMed ID: 6309289
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemotactically responsive and nonresposive forms of a continuous human monocyte cell line.
    Fischer DG; Pike MC; Koren HS; Snyderman R
    J Immunol; 1980 Jul; 125(1):463-5. PubMed ID: 7381208
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.