These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 6293565)

  • 1. Effect of fatty acids on plasma membrane lipid dynamics and cation permeability in neuroblastoma cells.
    Boonstra J; Nelemans SA; Feijen A; Bierman A; Van Zoelen EJ; Van der Saag PT; De Laat SW
    Biochim Biophys Acta; 1982 Nov; 692(3):321-9. PubMed ID: 6293565
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of 42K+ and 86Rb+ transport and electrical membrane properties in exponentially growing neuroblastoma cells.
    Boonstra J; Mummery CL; Tertoolen LG; Van der Saag PT; De Laat SW
    Biochim Biophys Acta; 1981 Apr; 643(1):89-100. PubMed ID: 7236694
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of external ATP on the plasma membrane permeability and (Na+ +K+)-ATPase activity of mouse neuroblastoma cells.
    van Zoelen EJ; Tertoolen LG; Boonstra J; van der Saag PT; De Laat SW
    Biochim Biophys Acta; 1982 Jun; 720(3):223-34. PubMed ID: 6285992
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Membrane regulation of the Na+,K+-ATPase during the neuroblastoma cell cycle: correlation with protein lateral mobility.
    van Zoelen EJ; Mummery CL; Boonstra J; van der Saag PT; de Laat SW
    J Cell Biochem; 1983; 21(1):77-91. PubMed ID: 6308015
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alterations of membrane integrity and cellular constituents by arachidonic acid in neuroblastoma and glioma cells.
    Chan PH; Fishman RA
    Brain Res; 1982 Sep; 248(1):151-7. PubMed ID: 6289988
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cation transport and growth regulation in neuroblastoma cells. Modulations of K+ transport and electrical membrane properties during the cell cycle.
    Boonstra J; Mummery CL; Tertoolen LG; Van Der Saag PT; De Laat SW
    J Cell Physiol; 1981 Apr; 107(1):75-83. PubMed ID: 7217225
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vanadate, alcohol of both increase passive membrane permeability of Neuro-2a cells; lesser sensitivity of HEp-2 cells.
    Montero MR; Guerri C; Grisolía S
    Life Sci; 1981 Feb; 28(6):641-6. PubMed ID: 6259483
    [No Abstract]   [Full Text] [Related]  

  • 8. Nonesterified fatty acids induce transmembrane monovalent cation flux: host-guest interactions as determinants of fatty acid-induced ion transport.
    Zeng Y; Han X; Schlesinger P; Gross RW
    Biochemistry; 1998 Jun; 37(26):9497-508. PubMed ID: 9649333
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alpha-adrenergic effects on 86Rb+ (K+) potentials and fluxes in brown fat cells.
    Nånberg E; Nedergaard J; Cannon B
    Biochim Biophys Acta; 1984 Jul; 804(3):291-300. PubMed ID: 6146351
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heparin, fatty acids and sodium, potassium-ATPase inhibition by plasma factors during hemodialysis.
    Gault MH; Vasdev SC; Longerich L; Purchase L; Sampson C; Johnson E
    Nephron; 1992; 60(3):292-301. PubMed ID: 1314335
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Restoration of Na(+)-K+ pump activity and resting membrane potential by myo-inositol supplementation in neuroblastoma cells chronically exposed to glucose or galactose.
    Yorek MA; Dunlap JA; Stefani MR
    Diabetes; 1991 Feb; 40(2):240-8. PubMed ID: 1846827
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lateral diffusion of membrane lipids and proteins during the cell cycle of neuroblastoma cells.
    de Laat SW; van der Saag PT; Elson EL; Schlessinger J
    Proc Natl Acad Sci U S A; 1980 Mar; 77(3):1526-8. PubMed ID: 6929504
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Na+-dependent amino acid transport is a major factor determining the rate of (Na+,K+)-ATPase mediated cation transport in intact HeLa cells.
    Zibirre R; Poronnik P; Koch G
    J Cell Physiol; 1986 Oct; 129(1):85-93. PubMed ID: 3020065
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of exposure to exogenous fatty acids and membrane fatty acid modification on the electrical properties of NG108-15 cells.
    Love JA; Saum WR; McGee R
    Cell Mol Neurobiol; 1985 Dec; 5(4):333-52. PubMed ID: 2417716
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Demonstration of an electrogenic Na+-K+ pump in mouse spleen macrophages.
    Gallin EK; Livengood DR
    Am J Physiol; 1983 Sep; 245(3):C184-8. PubMed ID: 6311022
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Factors determining the plasma-membrane potential of lymphocytes.
    Felber SM; Brand MD
    Biochem J; 1982 May; 204(2):577-85. PubMed ID: 6288022
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of magnesium-dependent cell membrane alterations on the transport of K+ in Ehrlich ascites tumour cells.
    Schilling K; Börnig H; Cumme G; Hoppe H
    Acta Biol Med Ger; 1980; 39(2-3):177-84. PubMed ID: 6252741
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of anoxia and ATP depletion on the membrane potential and permeability of dog liver.
    Lambotte L
    J Physiol; 1977 Jul; 269(1):53-76. PubMed ID: 894569
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Effect of oxytocin on the electrical potential and ion permeability of the apical membrane of frog gall bladder epithelial cells].
    Iaremenko MS; Prokopenko ON
    Biull Eksp Biol Med; 1978 Feb; 85(2):136-9. PubMed ID: 630080
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generation of plasma membrane potential by the Na+-pump coupled to proton extrusion.
    Bashford CL; Pasternak CA
    Eur Biophys J; 1985; 12(4):229-35. PubMed ID: 2412812
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.