These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 6293574)

  • 1. The effect of ACTH on rat brain synaptic plasma membrane lipid fluidity.
    Hershkowitz M; Zwiers H; Gispen WH
    Biochim Biophys Acta; 1982 Nov; 692(3):495-7. PubMed ID: 6293574
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ACTH and synaptic membrane phosphorylation in rat brain.
    Zwiers H; Jolles J; Aloyo VJ; Oestreicher AB; Gispen WH
    Prog Brain Res; 1982; 56():405-17. PubMed ID: 6298877
    [No Abstract]   [Full Text] [Related]  

  • 3. A spin label study on the effect of dibutyryl cyclic AMP on synaptic plasma membranes isolated from rat brain.
    Heinonen E; Gripenberg J; Jansson SE
    Acta Physiol Scand; 1983; 119(2):135-8. PubMed ID: 6318518
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adrenocorticotropic hormone (ACTH)-lipid interactions. Implications for involvement of amphipathic helix formation.
    Verhallen PF; Demel RA; Zwiers H; Gispen WH
    Biochim Biophys Acta; 1984 Aug; 775(2):246-54. PubMed ID: 6087904
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Change of synaptic membrane lipid composition and fluidity by chronic administration of lithium.
    López-Corcuera B; Giménez C; Aragón C
    Biochim Biophys Acta; 1988 Apr; 939(3):467-75. PubMed ID: 2833309
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adrenocorticotropin: ACTH1-38 is a major product of biotransformation by brain synaptic membranes.
    Codd EE; Burbach JP; Verhoef JC; Wang XC; Witter A
    J Neurochem; 1983 Jul; 41(1):284-6. PubMed ID: 6306171
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of infant rat cerebral cortical membrane proteins phosphorylated in vivo: identification of the ACTH-sensitive phosphoprotein B-50.
    Oestreicher AB; Zwiers H; Gispen WH; Roberts S
    J Neurochem; 1982 Sep; 39(3):683-92. PubMed ID: 6284876
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of brain polyphosphoinositide metabolism by ACTH-sensitive protein phosphorylation.
    Jolles J; Zwiers H; van Dongen CJ; Schotman P; Wirtz KW; Gispen WH
    Nature; 1980 Aug; 286(5773):623-5. PubMed ID: 6250080
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ethanol-induced fluidization of brain lipid bilayers: required presence of cholesterol in membranes for the expression of tolerance.
    Johnson DA; Lee NM; Cooke R; Loh HH
    Mol Pharmacol; 1979 May; 15(3):739-46. PubMed ID: 492153
    [No Abstract]   [Full Text] [Related]  

  • 10. Biphasic modulation by ACTH-like peptides of protein synthesis in a cell-free system from rat brain.
    Schotman P; Allaart J
    J Neurochem; 1981 Nov; 37(5):1349-52. PubMed ID: 6271926
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Docosahexaenoic acid-induced protective effect against impaired learning in amyloid beta-infused rats is associated with increased synaptosomal membrane fluidity.
    Hashimoto M; Hossain S; Shimada T; Shido O
    Clin Exp Pharmacol Physiol; 2006 Oct; 33(10):934-9. PubMed ID: 17002670
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The modulation of protein phosphorylation and receptor binding in synaptic membranes by changes in lipid fluidity: implications for ageing.
    Hershkowitz M; Heron D; Samuel D; Shinitzky M
    Prog Brain Res; 1982; 56():419-34. PubMed ID: 6298878
    [No Abstract]   [Full Text] [Related]  

  • 13. Effects of ethanol on structural parameters of rat brain membranes: relationship to genetic differences in ethanol sensitivity.
    Avdulov NA; Wood WG; Harris RA
    Alcohol Clin Exp Res; 1994 Feb; 18(1):53-9. PubMed ID: 8198227
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Myelin is a preferential target of aluminum-mediated oxidative damage.
    Verstraeten SV; Golub MS; Keen CL; Oteiza PI
    Arch Biochem Biophys; 1997 Aug; 344(2):289-94. PubMed ID: 9264541
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptation to ethanol-induced fluidization of brain lipid bilayers.
    Johnson DA; Lee NM; Cooke R
    Drug Alcohol Depend; 1979; 4(1-2):197-202. PubMed ID: 510172
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Excitatory effects of ACTH on noradrenergic neurons of the locus coeruleus in the rat.
    Olpe HR; Jones RS
    Brain Res; 1982 Nov; 251(1):177-9. PubMed ID: 6293647
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adaptive changes in membrane lipid composition and fluidity as the basis for ethanol tolerance.
    Littleton JM
    Drug Alcohol Depend; 1979; 4(1-2):189-95. PubMed ID: 510171
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes induced in rabbit plasma and aqueous humour by ACTH4-10 and ACTH1-24.
    Stárka L; Hampl R; Simecková A; Obenberger J; Drouhault R
    Endocrinol Exp; 1985 Mar; 19(1):25-8. PubMed ID: 2985354
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ACTH and brain RNA: changes in content and labelling of RNA in rat brain stem.
    Gispen WH; Schotman P
    Neuroendocrinology; 1976; 21(2):97-110. PubMed ID: 189247
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of the cannabinoids on physical properties of brain membranes and phospholipid vesicles: fluorescence studies.
    Hillard CJ; Harris RA; Bloom AS
    J Pharmacol Exp Ther; 1985 Mar; 232(3):579-88. PubMed ID: 2983062
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.