These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 6293600)

  • 1. Localized energy coupling during photophosphorylation by chromatophores of Rhodopseudomonas capsulata N22.
    Hitchens GD; Kell DB
    Biosci Rep; 1982 Oct; 2(10):743-9. PubMed ID: 6293600
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the extent of localization of the energized membrane state in chromatophores from Rhodopseudomonas capsulata N22.
    Hitchens GD; Kell DB
    Biochem J; 1982 Aug; 206(2):351-7. PubMed ID: 7150247
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Uncouplers can shuttle between localized energy-coupling sites during photophosphorylation by chromatophores of Rhodopseudomonas capsulata N22.
    Hitchens GD; Kell DB
    Biochem J; 1983 Apr; 212(1):25-30. PubMed ID: 6870853
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cyclic photophosphorylation by chromatophores of the facultative phototroph, Rhodopseudomonas capsulata.
    Klemme JH; Schlegel HG
    Arch Mikrobiol; 1968; 63(2):154-69. PubMed ID: 5703717
    [No Abstract]   [Full Text] [Related]  

  • 5. Light-induced electron transport pathways in membrane preparations from Rhodopseudomonas capsulata.
    Hochman A; Gen-Hayyim G; Carmeli C
    Arch Biochem Biophys; 1977 Dec; 184(2):416-22. PubMed ID: 596882
    [No Abstract]   [Full Text] [Related]  

  • 6. A comparison of electron transport and photophosphorylation systems of Rhodopseudomonas capsulata and Rhodospirillum rubrum. Effects of antimycin A and dibromothymoquinone.
    Gromet-Elhanan Z; Gest H
    Arch Microbiol; 1978 Jan; 116(1):29-34. PubMed ID: 414685
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The stimulation of photophosphorylation and ATPase by artificial redox mediators in chromatophores of Rhodopseudomonas capsulata at different redox potentials.
    Baccarini-Melandri A; Melandri BA; Hauska G
    J Bioenerg Biomembr; 1979 Apr; 11(1-2):1-16. PubMed ID: 162342
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The kinetic and redox potentiometric resolution of the carotenoid shifts in Rhodopseudomonas spheroides chromatophores: their relationship to electric field alterations in electron transport and energy coupling.
    Jackson JB; Dutton PL
    Biochim Biophys Acta; 1973 Oct; 325(1):102-13. PubMed ID: 4358810
    [No Abstract]   [Full Text] [Related]  

  • 9. Thermodynamics and kinetics of photophosphorylation in bacterial chromatophores and their relation with the transmembrane electrochemical potential difference of protons.
    Baccarini Melandri A; Casadio R; Melandri BA
    Eur J Biochem; 1977 Sep; 78(2):389-402. PubMed ID: 913405
    [No Abstract]   [Full Text] [Related]  

  • 10. Studies on the mechanism of NAD-photoreduction by chromatophores of the facultative phototroph, Rhodopseudomonas capsulata.
    Klemme JH
    Z Naturforsch B; 1969 Jan; 24(1):67-76. PubMed ID: 4388881
    [No Abstract]   [Full Text] [Related]  

  • 11. Cytochrome c2--reaction centre coupling in chromatophores of Rhodopseudomonas sphaeroides and Rhodopseudomonas capsulata.
    Bowyer JR; Tierney GV; Crofts AR
    FEBS Lett; 1979 May; 101(1):207-12. PubMed ID: 221250
    [No Abstract]   [Full Text] [Related]  

  • 12. A role for ubiquinone-10 in the b--c2 segment of the photosynthetic bacterial electron transport chain.
    Baccarini-Melandri A; Melandri BA
    FEBS Lett; 1977 Aug; 80(2):459-64. PubMed ID: 891997
    [No Abstract]   [Full Text] [Related]  

  • 13. Photosynthetic control and estimation of the optimal ATP: electron stoichiometry during flash activation of chromatophores from Rhodopseudomonas capsulata.
    Jackson JB; Venturoli G; Baccarini-Melandri A; Melandri BA
    Biochim Biophys Acta; 1981 Jun; 636(1):1-8. PubMed ID: 7284340
    [TBL] [Abstract][Full Text] [Related]  

  • 14. H+ uptake by chromatophores from Rhodopseudomonas spheroides. The relation between rapid H+ uptake and the H+ pump.
    Cogdell RJ; Crofts AR
    Biochim Biophys Acta; 1974 May; 347(2):264-72. PubMed ID: 4546206
    [No Abstract]   [Full Text] [Related]  

  • 15. In situ characterisation of photosynthetic electron transport in Rhodopseudomonas capsulata.
    Evans EH; Crofts AR
    Biochim Biophys Acta; 1974 Jul; 357(1):89-102. PubMed ID: 4370093
    [No Abstract]   [Full Text] [Related]  

  • 16. Reconstitution of photosynthetic electron transport and photophosphorylation in cytochrome-c2-deficient membrane preparation of Rhodopseudomonas capsulata.
    Hochman A; Carmeli C
    Arch Biochem Biophys; 1977 Feb; 179(1):349-59. PubMed ID: 190950
    [No Abstract]   [Full Text] [Related]  

  • 17. Nucleotide exchange in membrane vesicles from the photosynthetic bacterium Rhodopseudomonas capsulata.
    Hochman A; Bittan R; Carmeli C
    Arch Biochem Biophys; 1981 Oct; 211(1):413-8. PubMed ID: 7305378
    [No Abstract]   [Full Text] [Related]  

  • 18. The influence of energy-transfer inhibitors on proton permeability and photophosphorylation in normal and preilluminated Rhodospirillum rubrum chromatophores.
    Slooten L; Branders C
    Biochim Biophys Acta; 1979 Jul; 547(1):79-90. PubMed ID: 37903
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Light-induced oxygen reduction as a probe of electron transport between respiratory and photosynthetic components in membranes of Rhodopseudomonas capsulata.
    Zannoni D; Jasper P; Marrs B
    Arch Biochem Biophys; 1978 Dec; 191(2):625-31. PubMed ID: 742893
    [No Abstract]   [Full Text] [Related]  

  • 20. Modification by immobilization of the microenvironment of chromatophores of Rhodopseudomonas capsulata. The influence on light-induced ADP phosphorylation coupled to cyclic electron transport.
    Garde VL; Gellf G; Thomas D
    Eur J Biochem; 1981 May; 116(2):337-9. PubMed ID: 7250130
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.