These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 6293816)

  • 1. Non-equilibrium thermodynamic assessment of redox-driven H+ pumps in mitochondria.
    Pietrobon D; Zoratti M; Azzone GF; Stucki JW; Walz D
    Eur J Biochem; 1982 Oct; 127(3):483-94. PubMed ID: 6293816
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of funiculosin and antimycin A on the redox-driven H+-pumps in mitochondria: on the nature of "leaks'.
    Pietrobon D; Azzone GF; Walz D
    Eur J Biochem; 1981 Jul; 117(2):389-94. PubMed ID: 7274216
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intrinsic uncoupling of mitochondrial proton pumps. 2. Modeling studies.
    Pietrobon D; Zoratti M; Azzone GF; Caplan SR
    Biochemistry; 1986 Feb; 25(4):767-75. PubMed ID: 3964642
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidative phosphorylation in intact hepatocytes: quantitative characterization of the mechanisms of change in efficiency and cellular consequences.
    Leverve X; Sibille B; Devin A; Piquet MA; Espié P; Rigoulet M
    Mol Cell Biochem; 1998 Jul; 184(1-2):53-65. PubMed ID: 9746312
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tracking of proton flow during transition from anaerobiosis to steady state in rat liver mitochondria.
    Luvisetto S; Cola C; Conover TE; Azzone GF
    Biochim Biophys Acta; 1990 Jul; 1018(1):77-90. PubMed ID: 2165420
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Free energy coupling between H+-generating and H+-consuming pumps. Ratio between output and input forces.
    Petronilli V; Pietrobon D; Zoratti M; Azzone GF
    Eur J Biochem; 1986 Mar; 155(2):423-31. PubMed ID: 3007129
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of the proton/electron stoichiometry of mitochondrial ubiquinol:cytochrome c reductase by the membrane potential.
    Bechmann G; Weiss H
    Eur J Biochem; 1991 Jan; 195(2):431-8. PubMed ID: 1847681
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CALCIUM ION ACCUMULATION AND VOLUME CHANGES OF ISOLATED LIVER MITOCHONDRIA. CALCIUM ION-INDUCED SWELLING.
    CHAPPELL JB; CROFTS AR
    Biochem J; 1965 May; 95(2):378-86. PubMed ID: 14340088
    [TBL] [Abstract][Full Text] [Related]  

  • 9. H+/site, charge/site, and ATP/site ratios in mitochondrial electron transport.
    Pozzan T; Di Virgilio F; Bragadin M; Miconi V; Azzone GF
    Proc Natl Acad Sci U S A; 1979 May; 76(5):2123-7. PubMed ID: 36612
    [TBL] [Abstract][Full Text] [Related]  

  • 10. THe proton-per-electron stoicheiometry of 'site 1' of oxidative phosphorylation at high protonmotive force is close to 1.5.
    de Jonge PC; Westerhoff HV
    Biochem J; 1982 May; 204(2):515-23. PubMed ID: 6288021
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Steady-state H+/O stoichiometry of liver mitochondria.
    Al-Shawi MK; Brand MD
    Biochem J; 1981 Dec; 200(3):539-46. PubMed ID: 6282251
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conformational coupling in H+-pumps and ATP synthesis--its analysis with anisotropic inhibitors of energy transduction in oxidative phosphorylation.
    Higuti T
    Mol Cell Biochem; 1984; 61(1):37-61. PubMed ID: 6323966
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Local coupling of respiration processes and phosphorylation in rat liver mitochondria].
    Solodovnikova IM; Iurkov VI; Ton'shin AA; Iaguzhinskiĭ LS
    Biofizika; 2004; 49(1):47-56. PubMed ID: 15029720
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The K+/site and H+/site stoichiometry of mitochondrial electron transport.
    Reynafarje B; Lehninger AL
    J Biol Chem; 1978 Sep; 253(18):6331-4. PubMed ID: 210179
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Regulation of thyroid hormones of the interaction of mitochondria with low-molecular weight cytoplasmic mediators, induced by phosphate- dependent transport of K+ and H+ ions through the mitochondrial inner membrane].
    Gaĭnutdinov MKh; Konov VV; Ishmukhamedov RN; Zakharova TN; Khalilova MA; Mamatova ZA; Asrarov MI; Mirmakhmudova SI
    Biokhimiia; 1990 Dec; 55(12):2239-46. PubMed ID: 2096953
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The nature of controlled respiration and its relationship to protonmotive force and proton conductance in blowfly flight-muscle mitochondria.
    Johnson RN; Hansford RG
    Biochem J; 1977 May; 164(2):305-22. PubMed ID: 195584
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative analysis of some mechanisms affecting the yield of oxidative phosphorylation: dependence upon both fluxes and forces.
    Rigoulet M; Leverve X; Fontaine E; Ouhabi R; Guérin B
    Mol Cell Biochem; 1998 Jul; 184(1-2):35-52. PubMed ID: 9746311
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of temperature and chronic ethanol feeding on the proton electrochemical potential and phosphate potential in rat liver mitochondria.
    Rottenberg H; Robertson DE; Rubin E
    Biochim Biophys Acta; 1985 Aug; 809(1):1-10. PubMed ID: 2862912
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrogenic proton ejection coupled to electron transport through the energy-conserving site 2 and K+/H+ exchange in yeast mitochondria.
    Villalobo A; Briquet M; Goffeau A
    Biochim Biophys Acta; 1981 Aug; 637(1):124-9. PubMed ID: 6269603
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unique relationships between the rates of oxidation and phosphorylation and the protonmotive force in rat-liver mitochondria.
    Woelders H; van der Velden T; van Dam K
    Biochim Biophys Acta; 1988 Jun; 934(1):123-34. PubMed ID: 2837288
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.