BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 6293871)

  • 1. Possible role of H+--alkali cation countertransport in secretory granule swelling during exocytosis.
    Grinstein S; Vander Meulen J; Furuya W
    FEBS Lett; 1982 Nov; 148(1):1-4. PubMed ID: 6293871
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Osmotic swelling of vesicles: its role in the fusion of vesicles with planar phospholipid bilayer membranes and its possible role in exocytosis.
    Finkelstein A; Zimmerberg J; Cohen FS
    Annu Rev Physiol; 1986; 48():163-74. PubMed ID: 2423021
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oscillations of pH inside the secretory granule control the gain of Ca2+ release for signal transduction in goblet cell exocytosis.
    Chin WC; Quesada I; Nguyen T; Verdugo P
    Novartis Found Symp; 2002; 248():132-41; discussion 141-9, 277-82. PubMed ID: 12568492
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A model of biogenic amine accumulation into chromaffin granules and ghosts based on coupling to the electrochemical proton gradient.
    Johnson RG; Carty S; Scarpa A
    Fed Proc; 1982 Sep; 41(11):2746-54. PubMed ID: 7117549
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Is swelling of the secretory granule matrix the force that dilates the exocytotic fusion pore?
    Monck JR; Oberhauser AF; Alvarez de Toledo G; Fernandez JM
    Biophys J; 1991 Jan; 59(1):39-47. PubMed ID: 2015389
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exocytosis from rat submandibular granular tubules during cyclocytidine stimulation shows unusual features, including changes in the granule membrane.
    Thomopoulos GN; Garrett JR; Proctor GB; Hartley R; Zhang XS
    Microsc Res Tech; 1996 Dec; 35(5):365-76. PubMed ID: 8989766
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anion and proton transport in chromaffin granules.
    Pazoles CJ
    Fed Proc; 1982 Sep; 41(11):2769-74. PubMed ID: 6288478
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Platelet secretory mechanisms.
    Reed GL
    Semin Thromb Hemost; 2004 Aug; 30(4):441-50. PubMed ID: 15354265
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ATP-independent luminal oscillations and release of Ca2+ and H+ from mast cell secretory granules: implications for signal transduction.
    Quesada I; Chin WC; Verdugo P
    Biophys J; 2003 Aug; 85(2):963-70. PubMed ID: 12885643
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanisms of secretory granule transport and exocytosis in anterior pituitary cells.
    Senda T
    Ital J Anat Embryol; 1995; 100 Suppl 1():219-29. PubMed ID: 11322296
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein and lipid sorting from the trans-Golgi network to secretory granules-recent developments.
    Thiele C; Huttner WB
    Semin Cell Dev Biol; 1998 Oct; 9(5):511-6. PubMed ID: 9835638
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetics of release of serotonin from isolated secretory granules. II. Ion exchange determines the diffusivity of serotonin.
    Marszalek PE; Farrell B; Verdugo P; Fernandez JM
    Biophys J; 1997 Sep; 73(3):1169-83. PubMed ID: 9284284
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tension in secretory granule membranes causes extensive membrane transfer through the exocytotic fusion pore.
    Monck JR; Alvarez de Toledo G; Fernandez JM
    Proc Natl Acad Sci U S A; 1990 Oct; 87(20):7804-8. PubMed ID: 2235997
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Patch clamp studies of single intact secretory granules.
    Oberhauser AF; Fernandez JM
    Biophys J; 1993 Nov; 65(5):1844-52. PubMed ID: 7507717
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Platelet-activating factor stimulates cytoplasmic alkalinization and granule acidification in human eosinophils.
    Bankers-Fulbright JL; Kephart GM; Bartemes KR; Kita H; O'Grady SM
    J Cell Sci; 2004 Nov; 117(Pt 24):5749-57. PubMed ID: 15507482
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence of de novo membrane generation in the mechanism of mast cell secretory granule activation.
    Chock SP; Schmauder-Chock EA
    Biochem Biophys Res Commun; 1985 Oct; 132(1):134-9. PubMed ID: 4062926
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of vacuolar H(+)-ATPase in the control of intragranular pH and exocytosis in eosinophils.
    Kurashima K; Numata M; Yachie A; Sai Y; Ishizaka N; Fujimura M; Matsuda T; Ohkuma S
    Lab Invest; 1996 Nov; 75(5):689-98. PubMed ID: 8941214
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The formation of compound granules from different types of secretory organelles in human platelets (dense granules and alpha-granules). A cryofixation/-substitution study using serial sections.
    Morgenstern E
    Eur J Cell Biol; 1995 Oct; 68(2):183-90. PubMed ID: 8575464
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Association between myristoylated alanin-rich C kinase substrate (MARCKS) translocation and cortical granule exocytosis in rat eggs.
    Eliyahu E; Shtraizent N; Tsaadon A; Shalgi R
    Reproduction; 2006 Feb; 131(2):221-31. PubMed ID: 16452716
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metal ion specificity in anaesthetic induced increase in the rate of monensin and nigericin mediated H+/M+ exchange across phospholipid vesicular membranes.
    Prabhananda BS; Kombrabail MH
    Indian J Biochem Biophys; 1999 Dec; 36(6):415-21. PubMed ID: 10844995
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.