BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 6294088)

  • 1. The granulocyte-angiotensin system. Angiotensin I-converting activity of cathepsin G.
    Klickstein LB; Kaempfer CE; Wintroub BU
    J Biol Chem; 1982 Dec; 257(24):15042-6. PubMed ID: 6294088
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Granulocyte-angiotensin system. Identification of angiotensinogen as the plasma protein substrate of leukocyte cathepsin G.
    Wintroub BU; Klickstein LB; Dzau VJ; Watt KW
    Biochemistry; 1984 Jan; 23(2):227-32. PubMed ID: 6696878
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Angiotensin I conversion by human and rat chymotryptic proteinases.
    Wintroub BU; Schechter NB; Lazarus GS; Kaempfer CE; Schwartz LB
    J Invest Dermatol; 1984 Nov; 83(5):336-9. PubMed ID: 6092480
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemistry of a human monocyte-derived cell line (U937): identification of the angiotensin I-converting activity as leukocyte cathepsin G.
    Snyder RA; Kaempfer CE; Wintroub BU
    Blood; 1985 Jan; 65(1):176-82. PubMed ID: 2981131
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of a human neutrophil angiotension II-generating protease as cathepsin G.
    Tonnesen MG; Klempner MS; Austen KF; Wintroub BU
    J Clin Invest; 1982 Jan; 69(1):25-30. PubMed ID: 6172448
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Angiotensin II generation at the cell surface of activated neutrophils: novel cathepsin G-mediated catalytic activity that is resistant to inhibition.
    Owen CA; Campbell EJ
    J Immunol; 1998 Feb; 160(3):1436-43. PubMed ID: 9570564
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cathepsin G is a strong platelet agonist released by neutrophils.
    Selak MA; Chignard M; Smith JB
    Biochem J; 1988 Apr; 251(1):293-9. PubMed ID: 3390156
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activation of human platelets by C5a-stimulated neutrophils: a role for cathepsin G.
    Ferrer-Lopez P; Renesto P; Schattner M; Bassot S; Laurent P; Chignard M
    Am J Physiol; 1990 Jun; 258(6 Pt 1):C1100-7. PubMed ID: 2360620
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of human neutrophil-derived cathepsin G and azurocidin/CAP37 as chemoattractants for mononuclear cells and neutrophils.
    Chertov O; Ueda H; Xu LL; Tani K; Murphy WJ; Wang JM; Howard OM; Sayers TJ; Oppenheim JJ
    J Exp Med; 1997 Aug; 186(5):739-47. PubMed ID: 9271589
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction of heparin cofactor II with neutrophil elastase and cathepsin G.
    Pratt CW; Tobin RB; Church FC
    J Biol Chem; 1990 Apr; 265(11):6092-7. PubMed ID: 2318847
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Release and degradation of angiotensin I and angiotensin II from angiotensinogen by neutrophil serine proteinases.
    Ramaha A; Patston PA
    Arch Biochem Biophys; 2002 Jan; 397(1):77-83. PubMed ID: 11747312
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolism of substance P and bradykinin by human neutrophils.
    Skidgel RA; Jackman HL; Erdös EG
    Biochem Pharmacol; 1991 May; 41(9):1335-44. PubMed ID: 1708255
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of the primary antimicrobial domains in human neutrophil cathepsin G.
    Bangalore N; Travis J; Onunka VC; Pohl J; Shafer WM
    J Biol Chem; 1990 Aug; 265(23):13584-8. PubMed ID: 2116408
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The control of neutrophil chemotaxis by inhibitors of cathepsin G and chymotrypsin.
    Lomas DA; Stone SR; Llewellyn-Jones C; Keogan MT; Wang ZM; Rubin H; Carrell RW; Stockley RA
    J Biol Chem; 1995 Oct; 270(40):23437-43. PubMed ID: 7559504
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptation of human neutrophil responsiveness to the chemoattractant N-formylmethionylleucylphenylalanine. Heterogeneity and/or negative cooperative interaction of receptors.
    Seligmann BE; Fletcher MP; Gallin JI
    J Biol Chem; 1982 Jun; 257(11):6280-6. PubMed ID: 6281264
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The stimulation of lysosomal enzyme secretion from human polymorphonuclear leucocytes by leukotriene B4.
    Rae SA; Smith MJ
    J Pharm Pharmacol; 1981 Sep; 33(9):616-7. PubMed ID: 6117650
    [No Abstract]   [Full Text] [Related]  

  • 17. Rapid conversion of angiotensin I to angiotensin II by neutrophil and mast cell proteinases.
    Reilly CF; Tewksbury DA; Schechter NM; Travis J
    J Biol Chem; 1982 Aug; 257(15):8619-22. PubMed ID: 6807977
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human neutrophils release serine proteases capable of activating prorenin.
    Dzau VJ; Gonzalez D; Kaempfer C; Dubin D; Wintroub BU
    Circ Res; 1987 Apr; 60(4):595-601. PubMed ID: 3297385
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The dependence on Ca2+ of phosphatidylinositol breakdown and enzyme secretion in rabbit neutrophils stimulated by formylmethionyl-leucylphenylalanine or ionomycin.
    Cockcroft S; Bennett JP; Gomperts BD
    Biochem J; 1981 Dec; 200(3):501-8. PubMed ID: 7342966
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inactivation of bradykinin and kallidin by cathepsin G and mast cell chymase.
    Reilly CF; Schechter NB; Travis J
    Biochem Biophys Res Commun; 1985 Mar; 127(2):443-9. PubMed ID: 3884010
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.