These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Auto-oxidation and a membrane-associated 'Fenton reagent': a possible explanation for development of membrane lesions in sickle erythrocytes. Hebbel RP Clin Haematol; 1985 Feb; 14(1):129-40. PubMed ID: 2985310 [TBL] [Abstract][Full Text] [Related]
3. Hydroxyl radical formation by sickle erythrocyte membranes: role of pathologic iron deposits and cytoplasmic reducing agents. Repka T; Hebbel RP Blood; 1991 Nov; 78(10):2753-8. PubMed ID: 1668610 [TBL] [Abstract][Full Text] [Related]
5. Generation of superoxide anion and hydrogen peroxide by erythrocytes from individuals with sickle trait or normal haemoglobin. Schacter LP Eur J Clin Invest; 1986 Jun; 16(3):204-10. PubMed ID: 3015634 [TBL] [Abstract][Full Text] [Related]
6. The relative effectiveness of .OH, H2O2, O2-, and reducing free radicals in causing damage to biomembranes. A study of radiation damage to erythrocyte ghosts using selective free radical scavengers. Kong S; Davison AJ Biochim Biophys Acta; 1981 Jan; 640(1):313-25. PubMed ID: 6260172 [TBL] [Abstract][Full Text] [Related]
7. Human red cells scavenge extracellular hydrogen peroxide and inhibit formation of hypochlorous acid and hydroxyl radical. Winterbourn CC; Stern A J Clin Invest; 1987 Nov; 80(5):1486-91. PubMed ID: 2824562 [TBL] [Abstract][Full Text] [Related]
8. Membrane-bound hemichrome in density-separated cohorts of normal (AA) and sickled (SS) cells. Campwala HQ; Desforges JF J Lab Clin Med; 1982 Jan; 99(1):25-8. PubMed ID: 7054348 [TBL] [Abstract][Full Text] [Related]
9. Abnormal membrane protein methylation and merocyanine 540 fluorescence in sickle erythrocyte membranes. Manna C; Hermanowicz N; Ro JY; Neilan B; Glushko V; Kim S Biochem Med; 1984 Jun; 31(3):362-70. PubMed ID: 6477541 [TBL] [Abstract][Full Text] [Related]
10. The molecular pathobiology of cell membrane iron: the sickle red cell as a model. Browne P; Shalev O; Hebbel RP Free Radic Biol Med; 1998 Apr; 24(6):1040-8. PubMed ID: 9607615 [TBL] [Abstract][Full Text] [Related]
11. Excess heme in sickle erythrocyte inside-out membranes: possible role in thiol oxidation. Kuross SA; Rank BH; Hebbel RP Blood; 1988 Apr; 71(4):876-82. PubMed ID: 3355895 [TBL] [Abstract][Full Text] [Related]
12. Single Molecule Studies of the Diffusion of Band 3 in Sickle Cell Erythrocytes. Spector J; Kodippili GC; Ritchie K; Low PS PLoS One; 2016; 11(9):e0162514. PubMed ID: 27598991 [TBL] [Abstract][Full Text] [Related]
13. The role of interactions between O2, H2O2, .OH,e- and O2- in free radical damage to biological systems. Kong S; Davison AJ Arch Biochem Biophys; 1980 Oct; 204(1):18-29. PubMed ID: 6252843 [No Abstract] [Full Text] [Related]
14. The paradox of the serrated sickle erythrocyte: The importance of the red blood cell membrane topography. Ballas SK; Connes P Clin Hemorheol Microcirc; 2015 Oct; 63(2):149-52. PubMed ID: 26484716 [TBL] [Abstract][Full Text] [Related]
15. Enhanced erythrocyte apoptosis in sickle cell anemia, thalassemia and glucose-6-phosphate dehydrogenase deficiency. Lang KS; Roll B; Myssina S; Schittenhelm M; Scheel-Walter HG; Kanz L; Fritz J; Lang F; Huber SM; Wieder T Cell Physiol Biochem; 2002; 12(5-6):365-72. PubMed ID: 12438773 [TBL] [Abstract][Full Text] [Related]
16. Evidence for hydroxyl radical generation by human Monocytes. Weiss SJ; King GW; LoBuglio AF J Clin Invest; 1977 Aug; 60(2):370-3. PubMed ID: 194926 [TBL] [Abstract][Full Text] [Related]
17. Antioxidant system in sickle red cells. Beretta L; Gerli GC; Ferraresi R; Agostoni A; Gualandri V; Orsini GB Acta Haematol; 1983; 70(3):194-7. PubMed ID: 6410646 [TBL] [Abstract][Full Text] [Related]
18. Spin label study of hemoglobin membrane interactions in normal and sickle erythrocytes. Jones GL Proc West Pharmacol Soc; 1979; 22():79-86. PubMed ID: 515098 [No Abstract] [Full Text] [Related]