BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 6294242)

  • 1. Formation of hydroxyl radicals from the paraquat radical cation, demonstrated by a highly specific gas chromatographic technique. the role of superoxide radical anion, hydrogen peroxide, and glutathione reductase.
    Richmond R; Halliwell B
    J Inorg Biochem; 1982 Oct; 17(2):95-107. PubMed ID: 6294242
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydroxyl radical production from hydrogen peroxide and enzymatically generated paraquat radicals: catalytic requirements and oxygen dependence.
    Winterbourn CC; Sutton HC
    Arch Biochem Biophys; 1984 Nov; 235(1):116-26. PubMed ID: 6093705
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic studies on spin trapping of superoxide and hydroxyl radicals generated in NADPH-cytochrome P-450 reductase-paraquat systems. Effect of iron chelates.
    Yamazaki I; Piette LH; Grover TA
    J Biol Chem; 1990 Jan; 265(2):652-9. PubMed ID: 2153108
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resistance of paraquat and adriamycin in human breast tumor cells: role of free radical formation.
    Sinha BK; Dusre L; Collins C; Myers CE
    Biochim Biophys Acta; 1989 Mar; 1010(3):304-10. PubMed ID: 2537656
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation of superoxide and hydroxyl radicals from 1-methyl-4-phenylpyridinium ion (MPP+): reductive activation by NADPH cytochrome P-450 reductase.
    Sinha BK; Singh Y; Krishna G
    Biochem Biophys Res Commun; 1986 Mar; 135(2):583-8. PubMed ID: 3008728
    [TBL] [Abstract][Full Text] [Related]  

  • 6. One-electron reduction of chromate by NADPH-dependent glutathione reductase.
    Shi XL; Dalal NS
    J Inorg Biochem; 1990 Sep; 40(1):1-12. PubMed ID: 2178178
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chromium (V) and hydroxyl radical formation during the glutathione reductase-catalyzed reduction of chromium (VI).
    Shi XL; Dalal NS
    Biochem Biophys Res Commun; 1989 Aug; 163(1):627-34. PubMed ID: 2550002
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thioureas react with superoxide radicals to yield a sulfhydryl compound. Explanation for protective effect against paraquat.
    Kelner MJ; Bagnell R; Welch KJ
    J Biol Chem; 1990 Jan; 265(3):1306-11. PubMed ID: 2153125
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Superoxide-dependent and ascorbate-dependent formation of hydroxyl radicals in the presence of copper salts: a physiologically significant reaction?
    Rowley DA; Halliwell B
    Arch Biochem Biophys; 1983 Aug; 225(1):279-84. PubMed ID: 6311105
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Radical-driven Fenton reactions: studies with paraquat, adriamycin, and anthraquinone 6-sulfonate and citrate, ATP, ADP, and pyrophosphate iron chelates.
    Vile GF; Winterbourn CC; Sutton HC
    Arch Biochem Biophys; 1987 Dec; 259(2):616-26. PubMed ID: 2827582
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increased NADPH- and NADH-dependent production of superoxide and hydroxyl radical by microsomes after chronic ethanol treatment.
    Rashba-Step J; Turro NJ; Cederbaum AI
    Arch Biochem Biophys; 1993 Jan; 300(1):401-8. PubMed ID: 8380969
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of molecular oxygen in the generation of hydroxyl and superoxide anion radicals during enzymatic Cr(VI) reduction and its implication to Cr(VI)-induced carcinogenesis.
    Leonard S; Wang S; Zang L; Castranova V; Vallyathan V; Shi X
    J Environ Pathol Toxicol Oncol; 2000; 19(1-2):49-60. PubMed ID: 10905508
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms of superoxide radical-mediated toxicity.
    Bus JS; Gibson JE
    J Toxicol Clin Toxicol; 1982 Aug; 19(6-7):689-97. PubMed ID: 6298444
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of metals in oxygen radical reactions.
    Aust SD; Morehouse LA; Thomas CE
    J Free Radic Biol Med; 1985; 1(1):3-25. PubMed ID: 3013969
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ethanol oxidation by hydroxyl radicals: role of iron chelates, superoxide, and hydrogen peroxide.
    Feierman DE; Winston GW; Cederbaum AI
    Alcohol Clin Exp Res; 1985; 9(2):95-102. PubMed ID: 2988364
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electron spin resonance spin-trapping investigation into the effects of paraquat and desferrioxamine on hydroxyl radical generation during acute iron poisoning.
    Burkitt MJ; Kadiiska MB; Hanna PM; Jordan SJ; Mason RP
    Mol Pharmacol; 1993 Feb; 43(2):257-63. PubMed ID: 8381512
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Free radical enhancer xenobiotic is an inducer of cataract in rabbit.
    Bhuyan KC; Bhuyan DK; Podos SM
    Free Radic Res Commun; 1991; 12-13 Pt 2():609-20. PubMed ID: 1648013
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Doxorubicin enhances complement susceptibility of human melanoma cells by extracellular oxygen radical formation.
    Bredehorst R; Panneerselvam M; Vogel CW
    J Biol Chem; 1987 Feb; 262(5):2034-41. PubMed ID: 3029060
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Chemical and biochemical studies on reactivities, formations and toxicities of reactive oxygen species].
    Nagano T
    Yakugaku Zasshi; 1991 Feb; 111(2):103-19. PubMed ID: 1647454
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spin traps inhibit formation of hydrogen peroxide via the dismutation of superoxide: implications for spin trapping the hydroxyl free radical.
    Britigan BE; Roeder TL; Buettner GR
    Biochim Biophys Acta; 1991 Oct; 1075(3):213-22. PubMed ID: 1659450
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.