BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 6294245)

  • 1. Regulation of glycogenolysis in transformed astrocytes in vitro.
    Cummins CJ; Lust WD; Passonneau JV
    J Neurochem; 1983 Jan; 40(1):137-44. PubMed ID: 6294245
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of adrenergic agents on alpha-amylase release and adenosine 3',5'-monophosphate accumulation in rat parotid tissue slices.
    Butcher FR; Goldman JA; Nemerovski
    Biochim Biophys Acta; 1975 May; 392(1):82-94. PubMed ID: 164957
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interactions between cyclic AMP and inositol phosphate transduction systems in astrocytes in primary culture.
    Hansson E; Simonsson P; Alling C
    Neuropharmacology; 1990 Jun; 29(6):591-8. PubMed ID: 2166922
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adenylyl cyclase activation underlies intracellular cyclic AMP accumulation, cyclic AMP transport, and extracellular adenosine accumulation evoked by beta-adrenergic receptor stimulation in mixed cultures of neurons and astrocytes derived from rat cerebral cortex.
    Rosenberg PA; Li Y
    Brain Res; 1995 Sep; 692(1-2):227-32. PubMed ID: 8548307
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of glycogen metabolism in primary and transformed astrocytes in vitro.
    Cummins CJ; Lust WD; Passonneau JV
    J Neurochem; 1983 Jan; 40(1):128-36. PubMed ID: 6294244
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct effects of chronic ethanol exposure on beta-adrenergic and adenosine-sensitive adenylate cyclase activities and cyclic AMP content in primary cerebellar cultures.
    Rabin RA
    J Neurochem; 1990 Jul; 55(1):122-8. PubMed ID: 2162374
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of adrenergic agonists on glycogenolysis in primary cultures of astrocytes.
    Subbarao KV; Hertz L
    Brain Res; 1990 Dec; 536(1-2):220-6. PubMed ID: 2085749
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accumulation of inositol phosphates and cyclic AMP in guinea-pig cerebral cortical preparations. Effects of norepinephrine, histamine, carbamylcholine and 2-chloroadenosine.
    Hollingsworth EB; Daly JW
    Biochim Biophys Acta; 1985 Nov; 847(2):207-16. PubMed ID: 2998481
    [TBL] [Abstract][Full Text] [Related]  

  • 9. β1-adrenoceptor-stimulated lactate production in cultured astrocytes is predominantly glycogen-independent.
    Jiang X; Challiss J; Glynn P
    Biochem Pharmacol; 2020 Jul; 177():114035. PubMed ID: 32413424
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stimulation of glycogenolysis by beta adrenergic agonists in skeletal muscle of mice with the phosphorylase kinase deficiency mutation (I strain).
    Gross SR; Mayer SE; Longshore MA
    J Pharmacol Exp Ther; 1976 Sep; 198(3):526-38. PubMed ID: 978457
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the role of calcium ions in the regulation of glycogenolysis in mouse brain cortical slices.
    Ververken D; Van Veldhoven P; Proost C; Carton H; De Wulf H
    J Neurochem; 1982 May; 38(5):1286-95. PubMed ID: 6801208
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of neurotransmitters on astrocyte glycogen stores in vitro.
    Cambray-Deakin M; Pearce B; Morrow C; Murphy S
    J Neurochem; 1988 Dec; 51(6):1852-7. PubMed ID: 2903222
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adenosine A2B-receptor-mediated cyclic AMP accumulation in primary rat astrocytes.
    Peakman MC; Hill SJ
    Br J Pharmacol; 1994 Jan; 111(1):191-8. PubMed ID: 8012696
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robust glycogen shunt activity in astrocytes: Effects of glutamatergic and adrenergic agents.
    Walls AB; Heimbürger CM; Bouman SD; Schousboe A; Waagepetersen HS
    Neuroscience; 2009 Jan; 158(1):284-92. PubMed ID: 19000744
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Agonist-induced desensitization of adenylyl cyclase activity mediated by 5-hydroxytryptamine7 receptors in rat frontocortical astrocytes.
    Shimizu M; Nishida A; Zensho H; Miyata M; Yamawaki S
    Brain Res; 1998 Feb; 784(1-2):57-62. PubMed ID: 9518551
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of essential fatty acid deficiency on the adrenergic activation of glycogenolysis in rat hepatocytes.
    Grojec MS; Ishac EJ; Kapocsi J; Kunos G
    Arch Biochem Biophys; 1990 Nov; 283(1):34-9. PubMed ID: 2173490
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stimulation of glycogenolysis in rat caudate nucleus slices by L-isopropylnorepinephrine, dibutyryl cyclic AMP and 2-chloroadenosine.
    Wilkening D; Makman MH
    J Neurochem; 1976 May; 26(5):923-8. PubMed ID: 178828
    [No Abstract]   [Full Text] [Related]  

  • 18. A procedure for measuring alpha 2-adrenergic receptor-mediated inhibition of cyclic AMP accumulation in rat brain slices.
    Duman RS; Enna SJ
    Brain Res; 1986 Oct; 384(2):391-4. PubMed ID: 3022868
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Astrocytic glycogenolysis: mechanisms and functions.
    Hertz L; Xu J; Song D; Du T; Li B; Yan E; Peng L
    Metab Brain Dis; 2015 Feb; 30(1):317-33. PubMed ID: 24744118
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in skeletal muscle glycogenolysis after prolonged cold exposure and repeated injections with isoproterenol.
    Thibault MC; Côté C; Vallières J
    Can J Physiol Pharmacol; 1979 Sep; 57(9):938-43. PubMed ID: 229950
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.