BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 6294286)

  • 1. Occlusion of rubidium ions by the sodium-potassium pump: its implications for the mechanism of potassium transport.
    Glynn IM; Richards DE
    J Physiol; 1982 Sep; 330():17-43. PubMed ID: 6294286
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Occlusion of cobalt ions within the phosphorylated forms of the Na+-K+ pump isolated from dog kidney.
    Richards DE
    J Physiol; 1988 Oct; 404():497-514. PubMed ID: 2855351
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid release of 42K or 86Rb from two distinct transport sites on the Na,K-pump in the presence of Pi or vanadate.
    Forbush B
    J Biol Chem; 1987 Aug; 262(23):11116-27. PubMed ID: 2440884
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid release of 42K and 86Rb from an occluded state of the Na,K-pump in the presence of ATP or ADP.
    Forbush B
    J Biol Chem; 1987 Aug; 262(23):11104-15. PubMed ID: 2440883
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cation activation of the pig kidney sodium pump: transmembrane allosteric effects of sodium.
    Karlish SJ; Stein WD
    J Physiol; 1985 Feb; 359():119-49. PubMed ID: 2582111
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rb+ occlusion in renal (Na+ + K+)-ATPase characterized with a simple manual assay.
    Shani M; Goldschleger R; Karlish SJ
    Biochim Biophys Acta; 1987 Nov; 904(1):13-21. PubMed ID: 2822111
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sodium ions, acting at high-affinity extracellular sites, inhibit sodium-ATPase activity of the sodium pump by slowing dephosphorylation.
    Beaugé LA; Glynn IM
    J Physiol; 1979 Apr; 289():17-31. PubMed ID: 222896
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid release of 45Ca from an occluded state of the Na,K-pump.
    Forbush B
    J Biol Chem; 1988 Jun; 263(17):7970-8. PubMed ID: 2836404
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chromium(III)ATP inactivating (Na+ + K+)-ATPase supports Na+-Na+ and Rb+-Rb+ exchanges in everted red blood cells but not Na+,K+ transport.
    Pauls H; Serpersu EH; Kirch U; Schoner W
    Eur J Biochem; 1986 Jun; 157(3):585-95. PubMed ID: 2424757
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence for essential carboxyls in the cation-binding domain of the Na,K-ATPase.
    Arguello JM; Kaplan JH
    J Biol Chem; 1991 Aug; 266(22):14627-35. PubMed ID: 1650364
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temperature effects on sodium pump phosphoenzyme distribution in human red blood cells.
    Kaplan JH; Kenney LJ
    J Gen Physiol; 1985 Jan; 85(1):123-36. PubMed ID: 2578548
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Active potassium transport coupled to active sodium transport in vesicles reconstituted from purified sodium and potassium ion-activated adenosine triphosphatase from the rectal gland of Squalus acanthias.
    Hilden S; Hokin LE
    J Biol Chem; 1975 Aug; 250(16):6296-303. PubMed ID: 125752
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of rates of cation release and of conformational change in dog kidney Na, K-ATPase.
    Glynn IM; Hara Y; Richards DE; Steinberg M
    J Physiol; 1987 Feb; 383():477-85. PubMed ID: 2443654
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Binding of Na+ ions to the Na,K-ATPase increases the reactivity of an essential residue in the ATP binding domain.
    Ellis-Davies GC; Kaplan JH
    J Biol Chem; 1990 Nov; 265(33):20570-6. PubMed ID: 2173713
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inactivation of Rb+ and Na+ occlusion on (Na+,K+)-ATPase by modification of carboxyl groups.
    Shani-Sekler M; Goldshleger R; Tal DM; Karlish SJ
    J Biol Chem; 1988 Dec; 263(36):19331-41. PubMed ID: 2848822
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The interaction of amines with the occluded state of the Na,K-pump.
    Forbush B
    J Biol Chem; 1988 Jun; 263(17):7979-88. PubMed ID: 2836405
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of lanthanides as competitors of Na+ and K+ in occlusion sites of renal (Na+,K+)-ATPase.
    David P; Karlish SJ
    J Biol Chem; 1991 Aug; 266(23):14896-902. PubMed ID: 1651313
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence for the ordered release of rubidium ions occluded within individual protomers of dog kidney Na+,K+-ATPase.
    Glynn IM; Richards DE
    J Physiol; 1989 Jan; 408():57-66. PubMed ID: 2550627
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphatase activity of Na+/K+-ATPase. Enzyme conformations from ligands interactions and Rb occlusion experiments.
    Campos M; Berberián G; Beaugé L
    Biochim Biophys Acta; 1988 May; 940(1):43-50. PubMed ID: 2835101
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of (Na+ + K+)-ATPase-liposomes. III. Controlled activation and inhibition of symmetric pumps by timed asymmetric ATP, RbCl, and cardiac glycoside addition.
    Rey HG; Moosmayer M; Anner BM
    Biochim Biophys Acta; 1987 Jun; 900(1):27-37. PubMed ID: 2439119
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.