These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 6295392)

  • 1. Generation of hydroxyl radical and its involvement in lignin degradation by Phanerochaete chrysosporium.
    Kutsuki H; Gold MH
    Biochem Biophys Res Commun; 1982 Nov; 109(2):320-7. PubMed ID: 6295392
    [No Abstract]   [Full Text] [Related]  

  • 2. The involvement of hydroxyl radical derived from hydrogen peroxide in lignin degradation by the white rot fungus Phanerochaete chrysosporium.
    Forney LJ; Reddy CA; Tien M; Aust SD
    J Biol Chem; 1982 Oct; 257(19):11455-62. PubMed ID: 6288685
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production of hydroxyl radical by lignin peroxidase from Phanerochaete chrysosporium.
    Barr DP; Shah MM; Grover TA; Aust SD
    Arch Biochem Biophys; 1992 Nov; 298(2):480-5. PubMed ID: 1329659
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cellobiose oxidase from Phanerochaete chrysosporium as a source of Fenton's reagent.
    Kremer SM; Wood PM
    Biochem Soc Trans; 1992 May; 20(2):110S. PubMed ID: 1327893
    [No Abstract]   [Full Text] [Related]  

  • 5. Ethylene production from alpha-oxo-gamma-methylthiobutyric acid is a sensitive measure of ligninolytic activity by Phanerochaete chrysosporium.
    Kelley RL; Reddy CA
    Biochem J; 1982 Aug; 206(2):423-5. PubMed ID: 7150253
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lactoferrin-catalysed hydroxyl radical production. Additional requirement for a chelating agent.
    Winterbourn CC
    Biochem J; 1983 Jan; 210(1):15-9. PubMed ID: 6303309
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Substrate-induced H2O2 production in mycelia from the lignin-degrading fungus Phanerochaete chrysosporium.
    Greene RV; Gould JM
    Biochem Biophys Res Commun; 1983 Nov; 117(1):275-81. PubMed ID: 6661224
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Possible relationship between cyclic AMP and idiophasic metabolism in the white rot fungus Phanerochaete chrysosporium.
    MacDonald MJ; Paterson A; Broda P
    J Bacteriol; 1984 Oct; 160(1):470-2. PubMed ID: 6090435
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Growth, metabolism of Phanerochaete chrysosporium and route of lignin degradation in response to cadmium stress in solid-state fermentation.
    Zhao M; Zhang C; Zeng G; Huang D; Xu P; Cheng M
    Chemosphere; 2015 Nov; 138():560-7. PubMed ID: 26210020
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydroxyl radical production in body fluids. Roles of metal ions, ascorbate and superoxide.
    Winterbourn CC
    Biochem J; 1981 Jul; 198(1):125-31. PubMed ID: 6275837
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phanerochaete chrysosporium Multienzyme Catabolic System for in Vivo Modification of Synthetic Lignin to Succinic Acid.
    Hong CY; Ryu SH; Jeong H; Lee SS; Kim M; Choi IG
    ACS Chem Biol; 2017 Jul; 12(7):1749-1759. PubMed ID: 28463479
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Free hydroxyl radical is not involved in an important reaction of lignin degradation by Phanerochaete chrysosporium Burds.
    Kirk TK; Mozuch MD; Tien M
    Biochem J; 1985 Mar; 226(2):455-60. PubMed ID: 2986597
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydroxyl radicals and the toxicity of oral iron.
    Slivka A; Kang J; Cohen G
    Biochem Pharmacol; 1986 Feb; 35(4):553-6. PubMed ID: 3004504
    [No Abstract]   [Full Text] [Related]  

  • 14. Effects of molecular oxygen on lignin degradation by Phanerochaete chrysosporium.
    Bar-Lev SS; Kirk TK
    Biochem Biophys Res Commun; 1981 Mar; 99(2):373-8. PubMed ID: 7236274
    [No Abstract]   [Full Text] [Related]  

  • 15. Inactivating effect of phenolic unit structures on the biodegradation of lignin by lignin peroxidase from Phanerochaete chrysosporium.
    Thanh Mai Pham L; Eom MH; Kim YH
    Enzyme Microb Technol; 2014; 61-62():48-54. PubMed ID: 24910336
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro depolymerization of lignin by manganese peroxidase of Phanerochaete chrysosporium.
    Wariishi H; Valli K; Gold MH
    Biochem Biophys Res Commun; 1991 Apr; 176(1):269-75. PubMed ID: 2018522
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Involvement of singlet oxygen in the fungal degradation of lignin.
    Nakatsubo F; Reid ID; Kirk TK
    Biochem Biophys Res Commun; 1981 Sep; 102(1):484-91. PubMed ID: 7306167
    [No Abstract]   [Full Text] [Related]  

  • 18. Discovery and characterization of new O-methyltransferase from the genome of the lignin-degrading fungus Phanerochaete chrysosporium for enhanced lignin degradation.
    Thanh Mai Pham L; Kim YH
    Enzyme Microb Technol; 2016 Jan; 82():66-73. PubMed ID: 26672450
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of microsomal oxidation of alcohols and of hydroxyl-radical-scavenging agents by the iron-chelating agent desferrioxamine.
    Cederbaum AI; Dicker E
    Biochem J; 1983 Jan; 210(1):107-13. PubMed ID: 6303308
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biodegradation of lignin and nicotine with white rot fungi for the delignification and detoxification of tobacco stalk.
    Su Y; Xian H; Shi S; Zhang C; Manik SM; Mao J; Zhang G; Liao W; Wang Q; Liu H
    BMC Biotechnol; 2016 Nov; 16(1):81. PubMed ID: 27871279
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.