These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 6296054)

  • 1. Cloning and expression in Escherichia coli of the naphthalene degradation genes from plasmid NAH7.
    Schell MA
    J Bacteriol; 1983 Feb; 153(2):822-9. PubMed ID: 6296054
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of the nah and sal operons of plasmid NAH7: evidence for a new function in nahR.
    You IS; Gunsalus IC
    Biochem Biophys Res Commun; 1986 Dec; 141(3):986-92. PubMed ID: 3028396
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptional control of the nah and sal hydrocarbon-degradation operons by the nahR gene product.
    Schell MA
    Gene; 1985; 36(3):301-9. PubMed ID: 3908220
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cloning of genes for naphthalene metabolism in Pseudomonas putida.
    Grund AD; Gunsalus IC
    J Bacteriol; 1983 Oct; 156(1):89-94. PubMed ID: 6311809
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasmid gene organization: naphthalene/salicylate oxidation.
    Yen KM; Gunsalus IC
    Proc Natl Acad Sci U S A; 1982 Feb; 79(3):874-8. PubMed ID: 6278499
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Studies of nucleotide sequence homology between naphthalene-utilizing strains of bacteria.
    Serdar CM; Gibson DT
    Biochem Biophys Res Commun; 1989 Oct; 164(2):772-9. PubMed ID: 2684157
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Cloning of Pseudomonas putida genes responsible for the primary stages of oxidation of naphthalene in Escherichia coli cells].
    Boronin AM; Tsoĭ TV; Kosheleva IA; Arinbasarov MU; Adanin VM
    Genetika; 1989 Feb; 25(2):226-37. PubMed ID: 2661326
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monitoring of naphthalene catabolism by bioluminescence with nah-lux transcriptional fusions.
    Burlage RS; Sayler GS; Larimer F
    J Bacteriol; 1990 Sep; 172(9):4749-57. PubMed ID: 2203729
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electron microscope heteroduplex mapping of naphthalene oxidation genes on the NAH7 and SAL1 plasmids.
    Yen KM; Sullivan M; Gunsalus IC
    Plasmid; 1983 Mar; 9(2):105-11. PubMed ID: 6304791
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A gene cluster encoding steps in conversion of naphthalene to gentisate in Pseudomonas sp. strain U2.
    Fuenmayor SL; Wild M; Boyes AL; Williams PA
    J Bacteriol; 1998 May; 180(9):2522-30. PubMed ID: 9573207
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of the meta pathway operons on NAH plasmid pWW60-22 and TOL plasmid pWW53-4 and its evolutionary significance.
    Assinder SJ; Williams PA
    J Gen Microbiol; 1988 Oct; 134(10):2769-78. PubMed ID: 3254935
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasmid- and chromosome-mediated dissimilation of naphthalene and salicylate in Pseudomonas putida PMD-1.
    Zuniga MC; Durham DR; Welch RA
    J Bacteriol; 1981 Sep; 147(3):836-43. PubMed ID: 7275935
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bacterial metabolism of naphthalene: construction and use of recombinant bacteria to study ring cleavage of 1,2-dihydroxynaphthalene and subsequent reactions.
    Eaton RW; Chapman PJ
    J Bacteriol; 1992 Dec; 174(23):7542-54. PubMed ID: 1447127
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enzyme recruitment in vitro: use of cloned genes to extend the range of haloaromatics degraded by Pseudomonas sp. strain B13.
    Lehrbach PR; Zeyer J; Reineke W; Knackmuss HJ; Timmis KN
    J Bacteriol; 1984 Jun; 158(3):1025-32. PubMed ID: 6327621
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production of substituted naphthalene dihydrodiols by engineered Escherichia coli containing the cloned naphthalene 1,2-dioxygenase gene from Pseudomonas fluorescens N3.
    Gennaro PD; Galli E; Albini G; Pelizzoni F; Sello G; Bestetti G
    Res Microbiol; 1997 May; 148(4):355-64. PubMed ID: 9765814
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Comparative analysis of the organization of the NPL-1 plasmid controlling naphthalene oxidation in Pseudomonas putida and its derivatives].
    Kosheleva IA; Tsoĭ TV; Kulakova AN; Boronin AM
    Genetika; 1986 Oct; 22(10):2389-97. PubMed ID: 3025060
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of naphthalene catabolic genes of plasmid NAH7.
    Yen KM; Gunsalus IC
    J Bacteriol; 1985 Jun; 162(3):1008-13. PubMed ID: 3997772
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Plasmid characteristics of naphthalene and salicylate biodegradation in Pseudomonas putida].
    Zakharian RA; Bakunin KA; Gasparian NS; Kocharian ShM; Arakelov GM
    Mikrobiologiia; 1980; 49(6):931-5. PubMed ID: 6259498
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genomic and functional analysis of the IncP-9 naphthalene-catabolic plasmid NAH7 and its transposon Tn4655 suggests catabolic gene spread by a tyrosine recombinase.
    Sota M; Yano H; Ono A; Miyazaki R; Ishii H; Genka H; Top EM; Tsuda M
    J Bacteriol; 2006 Jun; 188(11):4057-67. PubMed ID: 16707697
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular cloning of gene xylS of the TOL plasmid: evidence for positive regulation of the xylDEGF operon by xylS.
    Inouye S; Nakazawa A; Nakazawa T
    J Bacteriol; 1981 Nov; 148(2):413-8. PubMed ID: 6271729
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.