These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 6296067)
1. Evidence that cyclic nucleotides activating rabbit muscle protein kinase I interact with both types of cAMP binding sites associated with the enzyme. Ogreid D; Døskeland SO; Miller JP J Biol Chem; 1983 Jan; 258(2):1041-9. PubMed ID: 6296067 [TBL] [Abstract][Full Text] [Related]
2. Activation of protein kinase isozymes by cyclic nucleotide analogs used singly or in combination. Principles for optimizing the isozyme specificity of analog combinations. Ogreid D; Ekanger R; Suva RH; Miller JP; Sturm P; Corbin JD; Døskeland SO Eur J Biochem; 1985 Jul; 150(1):219-27. PubMed ID: 2990925 [TBL] [Abstract][Full Text] [Related]
3. Comparison of the two classes of binding sites (A and B) of type I and type II cyclic-AMP-dependent protein kinases by using cyclic nucleotide analogs. Ogreid D; Ekanger R; Suva RH; Miller JP; Døskeland SO Eur J Biochem; 1989 Apr; 181(1):19-31. PubMed ID: 2540965 [TBL] [Abstract][Full Text] [Related]
4. Activation of protein kinase isoenzymes under near physiological conditions. Evidence that both types (A and B) of cAMP binding sites are involved in the activation of protein kinase by cAMP and 8-N3-cAMP. Ogreid D; Døskeland SO FEBS Lett; 1982 Dec; 150(1):161-6. PubMed ID: 6297968 [TBL] [Abstract][Full Text] [Related]
5. Probing the cyclic nucleotide binding sites of cAMP-dependent protein kinases I and II with analogs of adenosine 3',5'-cyclic phosphorothioates. Dostmann WR; Taylor SS; Genieser HG; Jastorff B; Døskeland SO; Ogreid D J Biol Chem; 1990 Jun; 265(18):10484-91. PubMed ID: 2162349 [TBL] [Abstract][Full Text] [Related]
6. Mutations that prevent cyclic nucleotide binding to binding sites A or B of type I cyclic AMP-dependent protein kinase. Ogreid D; Døskeland SO; Gorman KB; Steinberg RA J Biol Chem; 1988 Nov; 263(33):17397-404. PubMed ID: 2846564 [TBL] [Abstract][Full Text] [Related]
7. Activation of type I cyclic AMP-dependent protein kinases with defective cyclic AMP-binding sites. Steinberg RA; Russell JL; Murphy CS; Yphantis DA J Biol Chem; 1987 Feb; 262(6):2664-71. PubMed ID: 3029091 [TBL] [Abstract][Full Text] [Related]
8. Two classes of cAMP analogs which are selective for the two different cAMP-binding sites of type II protein kinase demonstrate synergism when added together to intact adipocytes. Beebe SJ; Holloway R; Rannels SR; Corbin JD J Biol Chem; 1984 Mar; 259(6):3539-47. PubMed ID: 6323428 [TBL] [Abstract][Full Text] [Related]
9. [cAMP-dependent protein kinase from pigeon breast muscle. Isolation of regulatory subunits by affinity chromatography and study of the topography of the cAMP binding site using cAMP analogs]. Grivennikov IA; Petukhov SP; Bulargina TV; Guliaev NN; Severin ES Biokhimiia; 1984 Sep; 49(9):1395-406. PubMed ID: 6097305 [TBL] [Abstract][Full Text] [Related]
10. Interaction of cAMP derivatives with the 'stable' cAMP-binding site in the cAMP-dependent protein kinase type I. de Wit RJ; Hoppe J; Stec WJ; Baraniak J; Jastorff B Eur J Biochem; 1982 Feb; 122(1):95-9. PubMed ID: 6277633 [TBL] [Abstract][Full Text] [Related]
12. Inhibitory action of certain cyclophosphate derivatives of cAMP on cAMP-dependent protein kinases. de Wit RJ; Hekstra D; Jastorff B; Stec WJ; Baraniak J; Van Driel R; Van Haastert PJ Eur J Biochem; 1984 Jul; 142(2):255-60. PubMed ID: 6086345 [TBL] [Abstract][Full Text] [Related]
13. The regulatory subunit monomer of cAMP-dependent protein kinase retains the salient kinetic properties of the native dimeric subunit. Rannels SR; Cobb CE; Landiss LR; Corbin JD J Biol Chem; 1985 Mar; 260(6):3423-30. PubMed ID: 2982860 [TBL] [Abstract][Full Text] [Related]
14. Phosphorylation of regulatory subunit of type I cyclic AMP-dependent protein kinase: biphasic effects of cyclic AMP in intact S49 mouse lymphoma cells. Russell JL; Steinberg RA J Cell Physiol; 1987 Feb; 130(2):207-13. PubMed ID: 3029147 [TBL] [Abstract][Full Text] [Related]
15. Mechanism of activation of the protein kinase I from rabbit skeletal muscle. The high-affinity ATP site of the holoenzyme. Hoppe J; Marutzky R; Freist W; Wagner KG Eur J Biochem; 1977 Nov; 80(2):369-72. PubMed ID: 200426 [TBL] [Abstract][Full Text] [Related]
16. Effect of some new cAMP analogs on cAMP-dependent protein kinase isoenzymes. Szücs K; Sági G; Vereb G Int J Biochem; 1992 Jun; 24(6):915-21. PubMed ID: 1319355 [TBL] [Abstract][Full Text] [Related]
17. Mechanisms of control for cAMP-dependent protein kinase from skeletal muscle. Beavo JA; Bechtel PJ; Krebs EG Adv Cyclic Nucleotide Res; 1975; 5():241-51. PubMed ID: 165668 [TBL] [Abstract][Full Text] [Related]
18. [Interaction of 8-substituted derivatives and adenosine-3',5'-cyclophosphate esters with protein kinase from pig brain]. Guliaev NN; Tunitskaia VL; Nesterova MV; Mazurova LA; Murtuzaev IM Biokhimiia; 1977 Nov; 42(11):2071-8. PubMed ID: 201309 [TBL] [Abstract][Full Text] [Related]
19. Mechanism of activation of protein kinase I from rabbit skeletal muscle. Investigation with agarose-immobilized cAMP derivatives. Rieke E; Hoppe J; Wagner KG Eur J Biochem; 1978 Feb; 83(2):419-26. PubMed ID: 204480 [No Abstract] [Full Text] [Related]
20. Cyclic nucleotides modulate the release of [3H] adenosine cyclic 3',5'-phosphate bound to the regulatory moiety of protein kinase I by the catalytic subunit of the kinase. Ogreid D; Døskeland SO Biochemistry; 1983 Mar; 22(7):1686-96. PubMed ID: 6303391 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]