These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 6296131)

  • 1. The oxidation of yeast Complex III. Evidence for a very rapid electron equilibration between cytochrome c1 and the iron-sulfur center.
    T'sai A; Olson JS; Palmer G
    J Biol Chem; 1983 Feb; 258(4):2122-5. PubMed ID: 6296131
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid reduction of cytochrome c1 in the presence of antimycin and its implication for the mechanism of electron transfer in the cytochrome b-c1 segment of the mitochondrial respiratory chain.
    Bowyer JR; Trumpower BL
    J Biol Chem; 1981 Mar; 256(5):2245-51. PubMed ID: 6257713
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electron transfer through center o of the cytochrome b-c1 complex of yeast mitochondria involves subunit VII, the ubiquinone-binding protein.
    Japa S; Beattie DS
    J Biol Chem; 1989 Aug; 264(24):13994-7. PubMed ID: 2547777
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The oxidation-reduction kinetics of the reaction of cytochrome c1 with non-physiological redox agents.
    König BW; Veerman EC; Van Gelder BF
    Biochim Biophys Acta; 1982 Jul; 681(1):54-61. PubMed ID: 6288083
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coenzyme Q analogues reconstitute electron transport and proton ejection but not the antimycin-induced "red shift" in mitochondria from coenzyme Q deficient mutants of the yeast Saccharomyces cerevisiae.
    Beattie DS; Clejan L
    Biochemistry; 1986 Mar; 25(6):1395-402. PubMed ID: 3008830
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Triphasic reduction of cytochrome b and the protonmotive Q cycle pathway of electron transfer in the cytochrome bc1 complex of the mitochondrial respiratory chain.
    Tang HL; Trumpower BL
    J Biol Chem; 1986 May; 261(14):6209-15. PubMed ID: 3009448
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Function of the iron-sulfur protein of the cytochrome b-c1 segment in electron-transfer and energy-conserving reactions of the mitochondrial respiratory chain.
    Trumpower BL
    Biochim Biophys Acta; 1981 Dec; 639(2):129-55. PubMed ID: 6272847
    [No Abstract]   [Full Text] [Related]  

  • 8. The kinetics of reoxidation of yeast complex III. An evaluation of the Q-cycle.
    Tsai AL; Olson JS; Palmer G
    J Biol Chem; 1987 Jun; 262(18):8677-84. PubMed ID: 3036820
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetics of electron transfer between cardiac cytochromes c1 and c.
    Kim CH; Balny C; King TE
    Proc Natl Acad Sci U S A; 1984 Apr; 81(7):2026-9. PubMed ID: 6326099
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The absorbance coefficient of beef heart cytochrome c1.
    Tervoort MJ; Schilder LT; Van Gelder BF
    Biochim Biophys Acta; 1981 Sep; 637(2):245-51. PubMed ID: 6271196
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of electron transfer from ferrocytochrome b to ubiquinone, cytochrome c1 and duroquinone by antimycin.
    VON Jagow G; Bohrer C
    Biochim Biophys Acta; 1975 Jun; 387(3):409-24. PubMed ID: 166667
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An inhibitor of mitochondrial respiration which binds to cytochrome b and displaces quinone from the iron-sulfur protein of the cytochrome bc1 complex.
    von Jagow G; Ljungdahl PO; Graf P; Ohnishi T; Trumpower BL
    J Biol Chem; 1984 May; 259(10):6318-26. PubMed ID: 6327677
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidation process of bovine heart ubiquinol-cytochrome c reductase as studied by stopped-flow rapid-scan spectrophotometry and simulations based on the mechanistic Q cycle model.
    Orii Y; Miki T
    J Biol Chem; 1997 Jul; 272(28):17594-604. PubMed ID: 9211907
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of the midpoint potential of the [2Fe-2S] Rieske iron sulfur center by Qo occupants in the bc1 complex.
    Shinkarev VP; Kolling DR; Miller TJ; Crofts AR
    Biochemistry; 2002 Dec; 41(48):14372-82. PubMed ID: 12450404
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catalytic activity of cytochromes c and c1 in mitochondria and submitochondrial particles.
    Nicholls P
    Biochim Biophys Acta; 1976 Apr; 430(1):30-45. PubMed ID: 177075
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel purification of cytochrome c1 from mitochondrial Complex III. Reconstitution of antimycin-insensitive electron transfer with the iron-sulfur protein and cytochrome c1.
    Shimomura Y; Nishikimi M; Ozawa T
    J Biol Chem; 1985 Dec; 260(28):15075-80. PubMed ID: 2999105
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ubiquinone at center N is responsible for triphasic reduction of cytochrome b in the cytochrome bc(1) complex.
    Snyder CH; Trumpower BL
    J Biol Chem; 1999 Oct; 274(44):31209-16. PubMed ID: 10531315
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electron transfer between liposomal cytochrome c1 and cytochrome c: catalytic implications of electrostatic potentials.
    Kim CH; King TE; Balny C
    Biochem Biophys Res Commun; 1989 Aug; 163(1):276-83. PubMed ID: 2549990
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of dibromothymoquinone on the structure and function of the mitochondrial bc1 complex.
    Degli Esposti M; Rotilio G; Lenaz G
    Biochim Biophys Acta; 1984 Oct; 767(1):10-20. PubMed ID: 6091748
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of the hinge protein in the electron transfer between cardiac cytochrome c1 and c. Equilibrium constants and kinetic probes.
    Kim CH; Balny C; King TE
    J Biol Chem; 1987 Jun; 262(17):8103-8. PubMed ID: 3036796
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.