These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 6296842)

  • 1. Tetanus toxin fragment forms channels in lipid vesicles at low pH.
    Boquet P; Duflot E
    Proc Natl Acad Sci U S A; 1982 Dec; 79(24):7614-8. PubMed ID: 6296842
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low pH induces a hydrophobic domain in the tetanus toxin molecule.
    Boquet P; Duflot E; Hauttecoeur B
    Eur J Biochem; 1984 Oct; 144(2):339-44. PubMed ID: 6489333
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A 50-kDa fragment from the NH2-terminus of the heavy subunit of Clostridium botulinum type A neurotoxin forms channels in lipid vesicles.
    Shone CC; Hambleton P; Melling J
    Eur J Biochem; 1987 Aug; 167(1):175-80. PubMed ID: 2441987
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increase of permeability of synaptosomes and liposomes by the heavy chain of tetanus toxin.
    Högy B; Dauzenroth ME; Hudel M; Weller U; Habermann E
    Toxicon; 1992 Jan; 30(1):63-76. PubMed ID: 1595080
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction of tetanus toxin with lipid vesicles at low pH. Protection of specific polypeptides against proteolysis.
    Roa M; Boquet P
    J Biol Chem; 1985 Jun; 260(11):6827-35. PubMed ID: 3922981
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chains and fragments of tetanus toxin. Separation, reassociation and pharmacological properties.
    Weller U; Dauzenroth ME; Meyer zu Heringdorf D; Habermann E
    Eur J Biochem; 1989 Jul; 182(3):649-56. PubMed ID: 2753037
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction of tetanus toxin with lipid vesicles. Effects of pH, surface charge, and transmembrane potential on the kinetics of channel formation.
    Menestrina G; Forti S; Gambale F
    Biophys J; 1989 Mar; 55(3):393-405. PubMed ID: 2467697
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation, purification, and characterization of fragment B, the NH2-terminal half of the heavy chain of tetanus toxin.
    Matsuda M; Lei DL; Sugimoto N; Ozutsumi K; Okabe T
    Infect Immun; 1989 Nov; 57(11):3588-93. PubMed ID: 2478476
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction of diphtheria toxin fragments A, B and protein crm 45 with liposomes.
    Boquet P
    Eur J Biochem; 1979 Oct; 100(2):483-9. PubMed ID: 510294
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure of tetanus toxin. I. Breakdown of the toxin molecule and discrimination between polypeptide fragments.
    Helting TB; Zwisler O
    J Biol Chem; 1977 Jan; 252(1):187-93. PubMed ID: 401808
    [TBL] [Abstract][Full Text] [Related]  

  • 11. pH-dependent bilayer destabilization and fusion of phospholipidic large unilamellar vesicles induced by diphtheria toxin and its fragments A and B.
    Defrise-Quertain F; Cabiaux V; Vandenbranden M; Wattiez R; Falmagne P; Ruysschaert JM
    Biochemistry; 1989 Apr; 28(8):3406-13. PubMed ID: 2742843
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure of tetanus toxin: the arrangement of papain digestion products within the heavy chain-light chain framework of extracellular toxin.
    Neubauer V; Helting TB
    Biochim Biophys Acta; 1981 Mar; 668(1):141-8. PubMed ID: 7016194
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pore formation by tetanus toxin, its chain and fragments in neuronal membranes and evaluation of the underlying motifs in the structure of the toxin molecule.
    Beise J; Hahnen J; Andersen-Beckh B; Dreyer F
    Naunyn Schmiedebergs Arch Pharmacol; 1994 Jan; 349(1):66-73. PubMed ID: 8139702
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Channels formed by botulinum, tetanus, and diphtheria toxins in planar lipid bilayers: relevance to translocation of proteins across membranes.
    Hoch DH; Romero-Mira M; Ehrlich BE; Finkelstein A; DasGupta BR; Simpson LL
    Proc Natl Acad Sci U S A; 1985 Mar; 82(6):1692-6. PubMed ID: 3856850
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Staphylococcal alpha-toxin: a study of membrane penetration and pore formation.
    Harshman S; Boquet P; Duflot E; Alouf JE; Montecucco C; Papini E
    J Biol Chem; 1989 Sep; 264(25):14978-84. PubMed ID: 2475492
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interactions of diphtheria toxin with lipid vesicles: determinants of ion channel formation.
    Shiver JW; Donovan JJ
    Biochim Biophys Acta; 1987 Sep; 903(1):48-55. PubMed ID: 2443169
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tetanus toxin is labeled with photoactivatable phospholipids at low pH.
    Montecucco C; Schiavo G; Brunner J; Duflot E; Boquet P; Roa M
    Biochemistry; 1986 Feb; 25(4):919-24. PubMed ID: 3964653
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of a binding site for ganglioside on the receptor binding domain of tetanus toxin.
    Louch HA; Buczko ES; Woody MA; Venable RM; Vann WF
    Biochemistry; 2002 Nov; 41(46):13644-52. PubMed ID: 12427026
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Topology of diphtheria toxin B fragment inserted in lipid vesicles.
    Cabiaux V; Quertenmont P; Conrath K; Brasseur R; Capiau C; Ruysschaert JM
    Mol Microbiol; 1994 Jan; 11(1):43-50. PubMed ID: 8145645
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the role of polysialoglycosphingolipids as tetanus toxin receptors. A study with lipid monolayers.
    Schiavo G; Demel R; Montecucco C
    Eur J Biochem; 1991 Aug; 199(3):705-11. PubMed ID: 1868854
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.