These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

58 related articles for article (PubMed ID: 6297138)

  • 1. Effects of chemical modification of lysine, tyrosine and tryptophan residues in pea seed nucleoside diphosphate kinase and inhibition of the enzyme with antibodies.
    Edlund B
    Ups J Med Sci; 1982; 87(3):251-8. PubMed ID: 6297138
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of chemical modification of a histidine and a lysine residue of pea seed nucleoside diphosphate kinase.
    Edlund B; Heldin CH; Engström L
    Ups J Med Sci; 1982; 87(3):243-50. PubMed ID: 6297137
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of phosphoryl transfer by nucleoside diphosphate kinase pH dependence and role of the active site Lys16 and Tyr56 residues.
    Schneider B; Babolat M; Xu YW; Janin J; Véron M; Deville-Bonne D
    Eur J Biochem; 2001 Apr; 268(7):1964-71. PubMed ID: 11277918
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discrimination between acid and alkali-labile phosphorylated residues on Immobilon: phosphorylation studies of nucleoside diphosphate kinase.
    Biondi RM; Walz K; Issinger OG; Engel M; Passeron S
    Anal Biochem; 1996 Nov; 242(2):165-71. PubMed ID: 8937558
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of nucleoside diphosphate kinase from pea microsomal membranes.
    Finan PM; White IR; Findlay JB; Millner PA
    Biochem Soc Trans; 1992 Feb; 20(1):10S. PubMed ID: 1321741
    [No Abstract]   [Full Text] [Related]  

  • 6. Comparative study of recombinant rat nucleoside diphosphate kinases alpha and beta by intrinsic protein fluorescence.
    Orlov NY; Orlova TG; Reshetnyak YK; Burstein EA; Kimura N
    J Biomol Struct Dyn; 1999 Feb; 16(4):955-68. PubMed ID: 10217461
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of essential amino acid residues of an alpha-amylase inhibitor from Phaseolus vulgaris white kidney beans.
    Takahashi T; Hiramoto S; Wato S; Nishimoto T; Wada Y; Nagai K; Yamaguchi H
    J Biochem; 1999 Nov; 126(5):838-44. PubMed ID: 10544275
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Autophosphorylation of nucleoside diphosphate kinase from Myxococcus xanthus.
    Muñoz-Dorado J; Almaula N; Inouye S; Inouye M
    J Bacteriol; 1993 Feb; 175(4):1176-81. PubMed ID: 8381783
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intramolecular ionic interactions of lysine residues and a possible folding domain in fructose diphosphate aldolase.
    Lambert JM; Perham RN; Coggins JR
    Biochem J; 1977 Jan; 161(1):63-71. PubMed ID: 851425
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microtubules and nucleoside diphosphate kinase. Nucleoside diphosphate kinase binds to co-purifying contaminants rather than to microtubule proteins.
    Islam K; Burns RG
    Biochem J; 1985 Dec; 232(3):651-6. PubMed ID: 3004412
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein phosphorylation corrects the folding defect of the neuroblastoma (S120G) mutant of human nucleoside diphosphate kinase A/Nm23-H1.
    Mocan I; Georgescauld F; Gonin P; Thoraval D; Cervoni L; Giartosio A; Dabernat-Arnaud S; Crouzet M; Lacombe ML; Lascu I
    Biochem J; 2007 Apr; 403(1):149-56. PubMed ID: 17155928
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probing the active site residues in aromatic donor oxidation in horseradish peroxidase: involvement of an arginine and a tyrosine residue in aromatic donor binding.
    Adak S; Mazumder A; Banerjee RK
    Biochem J; 1996 Mar; 314 ( Pt 3)(Pt 3):985-91. PubMed ID: 8615798
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modification of thiol groups of Jack bean urease with diazonium-1H-tetrazole.
    Sakaguchi K; Mitsui K; Hase J; Kobashi K
    J Biochem; 1984 Feb; 95(2):535-41. PubMed ID: 6715313
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphorylation of nucleoside diphosphate kinase at the active site studied by steady-state and time-resolved fluorescence.
    Deville-Bonne D; Sellam O; Merola F; Lascu I; Desmadril M; Véron M
    Biochemistry; 1996 Nov; 35(46):14643-50. PubMed ID: 8931563
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemical modification studies on Abrus agglutinin. Involvement of tryptophan residues in sugar binding.
    Patanjali SR; Swamy MJ; Anantharam V; Khan MI; Surolia A
    Biochem J; 1984 Feb; 217(3):773-81. PubMed ID: 6424652
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulatory properties and active site groups of cytosolic mung bean pyruvate kinase.
    Ambasht PK; Malhotra OP; Kayastha AM
    Indian J Biochem Biophys; 1997 Aug; 34(4):365-72. PubMed ID: 9491646
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nucleotide affinity for a stable phosphorylated intermediate of nucleoside diphosphate kinase.
    Schneider B; Norda A; Karlsson A; Veron M; Deville-Bonne D
    Protein Sci; 2002 Jul; 11(7):1648-56. PubMed ID: 12070317
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modification of arginyl and lysyl residues of flavokinase from rat small intestine.
    Nakano H; McCormick DB
    Biochem Int; 1992 Nov; 28(3):441-50. PubMed ID: 1336380
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of lysine, tryptophan and calcium in the beta-elimination activity of a low-molecular-mass pectate lyase from Fusarium moniliformae.
    Rao MN; Kembhavi AA; Pant A
    Biochem J; 1996 Oct; 319 ( Pt 1)(Pt 1):159-64. PubMed ID: 8870663
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Candida albicans nucleoside-diphosphate kinase: purification and characterization.
    Biondi RM; Veron M; Walz K; Passeron S
    Arch Biochem Biophys; 1995 Oct; 323(1):187-94. PubMed ID: 7487065
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.