These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 6297468)

  • 41. A Loose Relationship: Incomplete H
    Bazzone A; Zabadne AJ; Salisowski A; Madej MG; Fendler K
    Biophys J; 2017 Dec; 113(12):2736-2749. PubMed ID: 29262366
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Relationship of active membrane transport and respiration in Rhodotorula glutinis: possibility of two respiratory systems.
    Janda S
    Cell Mol Biol Incl Cyto Enzymol; 1979; 25(2):131-6. PubMed ID: 575314
    [No Abstract]   [Full Text] [Related]  

  • 43. Kinetics of high-affinity K+ uptake in plants, derived from K(+)-induced changes in current-voltage relationships. A modelling approach to the analysis of carrier-mediated transport.
    Maathuis FJ; Sanders D; Gradmann D
    Planta; 1997 Oct; 203(2):229-36. PubMed ID: 9362568
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Metabolism of the obligatory aerobic yeast Rhodotorula gracilis. I. Changes in metabolite concentrations following D-glucose and D-xylose addition to the cell suspension.
    Höfer M; Betz A; Becker JU
    Arch Mikrobiol; 1970; 71(2):99-110. PubMed ID: 4392696
    [No Abstract]   [Full Text] [Related]  

  • 45. An energy-dependent efflux system for potassium ions in yeast.
    Peña A; Ramírez J
    Biochim Biophys Acta; 1991 Sep; 1068(2):237-44. PubMed ID: 1911832
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [Studies of the uptake of polyalcohols by the obligatory aerobe yeast Rhodotorula gracilis].
    Klöppel R; Höfer M
    Zentralbl Bakteriol Orig A; 1974; 228(1):211-7. PubMed ID: 4154668
    [No Abstract]   [Full Text] [Related]  

  • 47. Adaptation of the mitochondrial systems of Rhodotorula gracilis to low oxygen pressure.
    Cocucci M; Rossi GF; Vandoni T
    Cell Differ; 1975 Jun; 4(3):155-65. PubMed ID: 167986
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Tight coupling of monosaccharide transport and metabolism in Rhodotorula gracilis.
    Höfer M; Kotyk A
    Folia Microbiol (Praha); 1968; 13(3):197-204. PubMed ID: 5691581
    [No Abstract]   [Full Text] [Related]  

  • 49. Coordination chemistry of microbial iron transport compounds: rhodotorulic acid and iron uptake in Rhodotorula pilimanae.
    Carrano CJ; Raymond KN
    J Bacteriol; 1978 Oct; 136(1):69-74. PubMed ID: 30750
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Reconstitution of lactate proton symport activity in plasma membrane vesicles from the yeast Candida utilis.
    Gerós H; Cássio F; Leão C
    Yeast; 1996 Sep; 12(12):1263-72. PubMed ID: 8905930
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Mechanism of spermine action on plasma membrane sugar transport function of yeast Rhodotorula glutinis.
    Kumar P; Misra PC
    Indian J Exp Biol; 1988 Nov; 26(11):824-7. PubMed ID: 3248839
    [No Abstract]   [Full Text] [Related]  

  • 52. Quantitative analysis of proton-linked transport systems. Glutamate transport in Staphylococcus aureus.
    Mitchell WJ; Booth IR; Hamilton WA
    Biochem J; 1979 Nov; 184(2):441-9. PubMed ID: 43145
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Mechanism of uptake of L-arginine by sugar-cane cells.
    Komor E; Thom M; Maretzki A
    Eur J Biochem; 1981 Jun; 116(3):527-33. PubMed ID: 7262072
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Uptake of phenol by Trichosporon cutaneum.
    Mörtberg M; Neujahr HY
    J Bacteriol; 1985 Feb; 161(2):615-9. PubMed ID: 2981818
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Reversible bioconcentration of monochlorobiphenyls by Rhodotorula rubra: correlations with aqueous solubility of substrate.
    Cole MA; Reichart PB; Button DK
    Bull Environ Contam Toxicol; 1979 Sep; 23(1-2):44-50. PubMed ID: 574035
    [No Abstract]   [Full Text] [Related]  

  • 56. A pyruvate-proton symport and an H+-ATPase regulate the intracellular pH of Trypanosoma brucei at different stages of its life cycle.
    Vanderheyden N; Wong J; Docampo R
    Biochem J; 2000 Feb; 346 Pt 1(Pt 1):53-62. PubMed ID: 10657239
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Energization of the transport systems for arabinose and comparison with galactose transport in Escherichia coli.
    Daruwalla KR; Paxton AT; Henderson PJ
    Biochem J; 1981 Dec; 200(3):611-27. PubMed ID: 6282256
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Charge and acidity compensation during proton-sugar symport in Chlorella: The H(+)-ATPase does not fully compensate for the sugar-coupled proton influx.
    Komor E; Cho BH; Schricker S; Schobert C
    Planta; 1989 Jan; 177(1):9-17. PubMed ID: 24212267
    [TBL] [Abstract][Full Text] [Related]  

  • 59. High capacity xylose transport in Candida intermedia PYCC 4715.
    Gárdonyi M; Osterberg M; Rodrigues C; Spencer-Martins I; Hahn-Hägerdal B
    FEMS Yeast Res; 2003 Mar; 3(1):45-52. PubMed ID: 12702245
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Metabolism of the obligatory aerobic yeast Rhodotorula gracilis. IV. Induction of an enzyme necessary for D-xylose catabolism.
    Höfer M; Betz A; Kotyk A
    Biochim Biophys Acta; 1971 Oct; 252(1):1-12. PubMed ID: 5168931
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.