These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 629757)

  • 41. The biosynthesis and linkage of teichuronic acid to peptidoglycan in Bacillus licheniformis.
    Ward JB; Curtis CA
    Eur J Biochem; 1982 Feb; 122(1):125-32. PubMed ID: 7060562
    [TBL] [Abstract][Full Text] [Related]  

  • 42.
    Larson TR; Yother J
    Proc Natl Acad Sci U S A; 2017 May; 114(22):5695-5700. PubMed ID: 28495967
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Phosphate-containing cell wall polymers of bacilli.
    Potekhina NV; Streshinskaya GM; Tul'skaya EM; Kozlova YI; Senchenkova SN; Shashkov AS
    Biochemistry (Mosc); 2011 Jul; 76(7):745-54. PubMed ID: 21999535
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Cross-linked peptidoglycan mediates lysostaphin binding to the cell wall envelope of Staphylococcus aureus.
    Gründling A; Schneewind O
    J Bacteriol; 2006 Apr; 188(7):2463-72. PubMed ID: 16547033
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Recycling of the anhydro-N-acetylmuramic acid derived from cell wall murein involves a two-step conversion to N-acetylglucosamine-phosphate.
    Uehara T; Suefuji K; Valbuena N; Meehan B; Donegan M; Park JT
    J Bacteriol; 2005 Jun; 187(11):3643-9. PubMed ID: 15901686
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Enzymatic deacetylation of N-acetylglucosamine residues in cell wall peptidoglycan.
    Araki Y; Oba S; Araki S; Ito E
    J Biochem; 1980 Aug; 88(2):469-79. PubMed ID: 6774970
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Structural studies on the bacterial cell wall peptidoglycan pseudomurein. I. Conformational energy calculations on the glycan strands in C1 conformation and comparison with murein.
    Leps B; Barnickel G; Bradaczek H
    J Theor Biol; 1984 Mar; 107(1):85-114. PubMed ID: 6547193
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A lipid intermediate in the synthesis of a poly-(N-acetylglucosamine 1-phosphate) from the wall of Staphylococcus lactis N.C.T.C. 2102.
    Brooks D; Baddiley J
    Biochem J; 1969 Nov; 115(2):307-14. PubMed ID: 4314120
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Immunochemical analysis of an unusual cell wall polysaccharide from animal coagulase-positive staphylococci. 2. Probable structure based on chemical and serological studies.
    Endresen C; Grov A
    Acta Pathol Microbiol Scand B; 1976 Oct; 84B(5):305-8. PubMed ID: 823796
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Biosynthesis of the peptidoglycan of bacterial cell walls. I. Utilization of uridine diphosphate acetylmuramyl pentapeptide and uridine diphosphate acetylglucosamine for peptidoglycan synthesis by particulate enzymes from Staphylococcus aureus and Micrococcus lysodeikticus.
    Anderson JS; Meadow PM; Haskin MA; Strominger JL
    Arch Biochem Biophys; 1966 Sep; 116(1):487-515. PubMed ID: 5961853
    [No Abstract]   [Full Text] [Related]  

  • 51. The biosynthesis of the wall teichoic acid in Staphylococcus lactis I3.
    Baddiley J; Blumsom NL; Douglas LJ
    Biochem J; 1968 Dec; 110(3):565-71. PubMed ID: 5701688
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The control of synthesis of bacterial cell walls. Interaction in the synthesis of nucleotide precursors.
    Anderson RG; Douglas LJ; Hussey H; Baddiley J
    Biochem J; 1973 Dec; 136(4):871-6. PubMed ID: 4786537
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A rapid and simple procedure for the preparation of the two bacterial cell wall peptidoglycan nucleotide precursors labeled in their amino sugars.
    Mirelman D
    Anal Biochem; 1976 Feb; 70(2):424-9. PubMed ID: 1267136
    [No Abstract]   [Full Text] [Related]  

  • 54. [Increase of non-amidated muropeptides in the cell wall of vancomycin-resistant Staphylococcus aureus (VRSA) strain Mu50].
    Hanaki H; Labischinski H; Inaba Y; Hiramatsu K
    Jpn J Antibiot; 1998 Apr; 51(4):272-80. PubMed ID: 9644600
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The mechanism of wall synthesis in bacteria. The organization of enzymes and isoprenoid phosphates in the membrane.
    Anderson RG; Hussey H; Baddiley J
    Biochem J; 1972 Mar; 127(1):11-25. PubMed ID: 4627447
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The glycerol teichoic acid from walls of Staphylococcus epidermidis I2.
    Archibald AR; Baddiley J; Shaukat GA
    Biochem J; 1968 Dec; 110(3):583-8. PubMed ID: 5701689
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The products of the partial acid hydrolysis of the mucopeptide from cell walls of Micrococcus lysodeikticus.
    PERKINS HR; ROGERS HJ
    Biochem J; 1959 Aug; 72(4):647-54. PubMed ID: 14431858
    [No Abstract]   [Full Text] [Related]  

  • 58. Amidase activity involved in peptidoglycan biosynthesis in membranes of Micrococcus luteus (sodonensis).
    Jensen SE; Campbell JN
    J Bacteriol; 1976 Jul; 127(1):319-26. PubMed ID: 931948
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Immersion refractometry of isolated bacterial cell walls.
    Marquis RE
    J Bacteriol; 1973 Dec; 116(3):1273-9. PubMed ID: 4201772
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Identification of a dedicated recycling pathway for anhydro-N-acetylmuramic acid and N-acetylglucosamine derived from Escherichia coli cell wall murein.
    Park JT
    J Bacteriol; 2001 Jul; 183(13):3842-7. PubMed ID: 11395446
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.