These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 6297881)

  • 21. Sidestream tobacco smoke as the main predictor of exposure to polycyclic aromatic hydrocarbons.
    Lodovici M; Akpan V; Evangelisti C; Dolara P
    J Appl Toxicol; 2004; 24(4):277-81. PubMed ID: 15300715
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Carbon-centered radicals in cigarette smoke: acyl and alkylaminocarbonyl radicals.
    Bartalis J; Zhao YL; Flora JW; Paine JB; Wooten JB
    Anal Chem; 2009 Jan; 81(2):631-41. PubMed ID: 19093757
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The contribution of low tar cigarettes to environmental tobacco smoke.
    Chortyk OT; Schlotzhauer WS
    J Anal Toxicol; 1989; 13(3):129-34. PubMed ID: 2755082
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chemical and biological studies of a new cigarette that primarily heats tobacco. Part 1. Chemical composition of mainstream smoke.
    Borgerding MF; Bodnar JA; Chung HL; Mangan PP; Morrison CC; Risner CH; Rogers JC; Simmons DF; Uhrig MS; Wendelboe FN; Wingate DE; Winkler LS
    Food Chem Toxicol; 1998 Mar; 36(3):169-82. PubMed ID: 9609390
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Synergistic induction of DNA strand breakage by cigarette tar and nitric oxide.
    Yoshie Y; Ohshima H
    Carcinogenesis; 1997 Jul; 18(7):1359-63. PubMed ID: 9230280
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mainstream smoke chemistry analysis of samples from the 2009 US cigarette market.
    Bodnar JA; Morgan WT; Murphy PA; Ogden MW
    Regul Toxicol Pharmacol; 2012 Oct; 64(1):35-42. PubMed ID: 22683394
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Influence of cigarette circumference on smoke chemistry, biological activity, and smoking behaviour.
    McAdam K; Eldridge A; Fearon IM; Liu C; Manson A; Murphy J; Porter A
    Regul Toxicol Pharmacol; 2016 Dec; 82():111-126. PubMed ID: 27634061
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A comparison of mainstream and sidestream marijuana and tobacco cigarette smoke produced under two machine smoking conditions.
    Moir D; Rickert WS; Levasseur G; Larose Y; Maertens R; White P; Desjardins S
    Chem Res Toxicol; 2008 Feb; 21(2):494-502. PubMed ID: 18062674
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Environmental tobacco smoke is just as damaging to DNA as mainstream smoke.
    Bermúdez E; Stone K; Carter KM; Pryor WA
    Environ Health Perspect; 1994 Oct; 102(10):870-4. PubMed ID: 9644196
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Philip Morris toxicological experiments with fresh sidestream smoke: more toxic than mainstream smoke.
    Schick S; Glantz S
    Tob Control; 2005 Dec; 14(6):396-404. PubMed ID: 16319363
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Lack of correlation between cigarette mainstream smoke particulate phase radicals and hydroquinone yield.
    Blakley RL; Henry DD; Smith CJ
    Food Chem Toxicol; 2001 Apr; 39(4):401-6. PubMed ID: 11295487
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Standardized Method for the Preparation of a Gas Phase Extract of Cigarette Smoke.
    Higashi T; Mai Y; Mazaki Y; Horinouchi T; Miwa S
    Biol Pharm Bull; 2016; 39(6):898-902. PubMed ID: 27251490
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluation of superoxide anion radicals generated from an aqueous extract of particulate phase cigarette smoke by electron spin resonance using 5,5-dimethyl-1-pyrroline-N-oxide.
    Takanami Y; Nakayama T
    Biosci Biotechnol Biochem; 2011; 75(1):34-9. PubMed ID: 21228485
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The radicals in cigarette tar: their nature and suggested physiological implications.
    Pryor WA; Hales BJ; Premovic PI; Church DF
    Science; 1983 Apr; 220(4595):425-7. PubMed ID: 6301009
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The smoke produced from the oxidative pyrolysis of perfluoro polymers: an ESR spin-trapping study.
    Lachocki TM; Nuggehalli SK; Scherer KV; Church DF; Pryor WA
    Chem Res Toxicol; 1989; 2(3):174-80. PubMed ID: 2562420
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Determination of benzene, toluene and 1,3-butadiene in cigarette smoke by GC-MDS.
    Brunnemann KD; Kagan MR; Cox JE; Hoffmann D
    Exp Pathol; 1989; 37(1-4):108-13. PubMed ID: 2637141
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tobacco smoke: involvement of reactive oxygen species and stable free radicals in mechanisms of oxidative damage, carcinogenesis and synergistic effects with other respirable particles.
    Valavanidis A; Vlachogianni T; Fiotakis K
    Int J Environ Res Public Health; 2009 Feb; 6(2):445-62. PubMed ID: 19440393
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An analysis of the mainstream smoke chemistry of samples of the U.S. cigarette market acquired between 1995 and 2000.
    Swauger JE; Steichen TJ; Murphy PA; Kinsler S
    Regul Toxicol Pharmacol; 2002 Apr; 35(2 Pt 1):142-56. PubMed ID: 12052000
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The changing cigarette, 1950-1995.
    Hoffmann D; Hoffmann I
    J Toxicol Environ Health; 1997 Mar; 50(4):307-64. PubMed ID: 9120872
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Differences between mainstream and sidestream cigarette smoke extracts and nicotine in the activation of platelets under static and flow conditions.
    Rubenstein D; Jesty J; Bluestein D
    Circulation; 2004 Jan; 109(1):78-83. PubMed ID: 14691035
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.