BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 6297976)

  • 21. Molecular modeling and electrostatic potential calculations on chemically modified Cu,Zn superoxide dismutases from Bos taurus and shark Prionace glauca: role of Lys134 in electrostatically steering the substrate to the active site.
    Polticelli F; Falconi M; O'Neill P; Petruzelli R; Galtieri A; Lania A; Calabrese L; Rotilio G; Desideri A
    Arch Biochem Biophys; 1994 Jul; 312(1):22-30. PubMed ID: 8031131
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Superoxide dismutase-like activities of copper(II) complexes tested in serum.
    Huber KR; Sridhar R; Griffith EH; Amma EL; Roberts J
    Biochim Biophys Acta; 1987 Sep; 915(2):267-76. PubMed ID: 2820500
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inactivation of erythrocyte Cu-Zn-superoxide dismutase through nonenzymatic glycosylation.
    Taniquchi N; Kinoshita N; Arai K; Iizuka S; Usui M; Naito T
    Prog Clin Biol Res; 1989; 304():277-90. PubMed ID: 2506563
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cyanide binding to Cu, Zn superoxide dismutase. An NMR study of the Cu(II), Co(II) derivative.
    Paci M; Desideri A; Rotilio G
    J Biol Chem; 1988 Jan; 263(1):162-6. PubMed ID: 3335495
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Point charge distributions and electrostatic steering in enzyme/substrate encounter: Brownian dynamics of modified copper/zinc superoxide dismutases.
    Sines JJ; Allison SA; McCammon JA
    Biochemistry; 1990 Oct; 29(40):9403-12. PubMed ID: 2248953
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Anion binding to the four-copper form of bovine erythrocyte superoxide dismutase: Mechanistic implications.
    Strothkamp KG; Lippard SJ
    Biochemistry; 1981 Dec; 20(26):7488-93. PubMed ID: 7326242
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cu,Zn superoxide dismutase from Photobacterium leiognathi is an hyperefficient enzyme.
    Stroppolo ME; Sette M; O'Neill P; Polizio F; Cambria MT; Desideri A
    Biochemistry; 1998 Sep; 37(35):12287-92. PubMed ID: 9724543
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Posttranslational modification of superoxide dismutase in cells; glycation and inactivation of Cu, Zn-superoxide dismutase].
    Taniguchi N; Kinoshita N; Arai K
    Tanpakushitsu Kakusan Koso; 1988 Dec; 33(16):2921-6. PubMed ID: 3150788
    [No Abstract]   [Full Text] [Related]  

  • 29. Mechanism of action of superoxide dismutase from pulse radiolysis and electron paramagnetic resonance. Evidence that only half the active sites function in catalysis.
    Fielden EM; Roberts PB; Bray RC; Lowe DJ; Mautner GN; Rotilio G; Calabrese L
    Biochem J; 1974 Apr; 139(1):49-60. PubMed ID: 4377100
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Competitive inhibition of Cu, Zn superoxide dismutase by monovalent anions.
    Rigo A; Stevanato R; Viglino P
    Biochem Biophys Res Commun; 1977 Dec; 79(3):776-83. PubMed ID: 202275
    [No Abstract]   [Full Text] [Related]  

  • 31. Formate as an NMR probe of anion binding to Cu,Zn and Cu,Co bovine erythrocyte superoxide dismutases.
    Sette M; Paci M; Desideri A; Rotilio G
    Biochemistry; 1992 Dec; 31(49):12410-5. PubMed ID: 1463727
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Binding of polyaminocarboxylate chelators to the active-site copper inhibits the GSNO-reductase activity but not the superoxide dismutase activity of Cu,Zn-superoxide dismutase.
    Ye M; English AM
    Biochemistry; 2006 Oct; 45(42):12723-32. PubMed ID: 17042490
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reduction and inactivation of superoxide dismutase by hydrogen peroxide.
    Bray RC; Cockle SA; Fielden EM; Roberts PB; Rotilio G; Calabrese L
    Biochem J; 1974 Apr; 139(1):43-8. PubMed ID: 4377099
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Studies on the reconstitution of bovine erythrocyte superoxide dismutase. IV. Preparation and some properties of the enzyme in which Co(II) is substituted for Zn(II).
    Fee JA
    J Biol Chem; 1973 Jun; 248(12):4229-34. PubMed ID: 4351217
    [No Abstract]   [Full Text] [Related]  

  • 35. Increase in the glucosylated form of erythrocyte Cu-Zn-superoxide dismutase in diabetes and close association of the nonenzymatic glucosylation with the enzyme activity.
    Arai K; Iizuka S; Tada Y; Oikawa K; Taniguchi N
    Biochim Biophys Acta; 1987 May; 924(2):292-6. PubMed ID: 3567220
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Urea-derived cyanate forms epsilon-amino-carbamoyl-lysine (homocitrulline) in leukocyte proteins in patients with end-stage renal disease on peritoneal dialysis.
    Kraus LM; Elberger AJ; Handorf CR; Pabst MJ; Kraus AP
    J Lab Clin Med; 1994 Jun; 123(6):882-91. PubMed ID: 8201267
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Substitution of arginine for lysine 134 alters electrostatic parameters of the active site in shark Cu,Zn superoxide dismutase.
    Calabrese L; Polticelli F; O'Neill P; Galtieri A; Barra D; SchininĂ  E; Bossa F
    FEBS Lett; 1989 Jun; 250(1):49-52. PubMed ID: 2500367
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cobalt substitution studies on bovine erythrocyte superoxide dismutase: evidence for a novel cobalt-superoxide dismutase derivative.
    Salvato B; Beltramini M; Ricchelli F; Tallandini L
    Biochim Biophys Acta; 1989 Sep; 998(1):14-20. PubMed ID: 2790051
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Phosphate is an inhibitor of copper-zinc superoxide dismutase.
    Mota de Freitas D; Valentine JS
    Biochemistry; 1984 Apr; 23(9):2079-82. PubMed ID: 6722136
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A kinetic study of the reactions between H2O2 and Cu,Zn superoxide dismutase; evidence for an electrostatic control of the reaction rate.
    Viglino P; Scarpa M; Rotilio G; Rigo A
    Biochim Biophys Acta; 1988 Jan; 952(1):77-82. PubMed ID: 3334855
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.