These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 6297976)
21. Molecular modeling and electrostatic potential calculations on chemically modified Cu,Zn superoxide dismutases from Bos taurus and shark Prionace glauca: role of Lys134 in electrostatically steering the substrate to the active site. Polticelli F; Falconi M; O'Neill P; Petruzelli R; Galtieri A; Lania A; Calabrese L; Rotilio G; Desideri A Arch Biochem Biophys; 1994 Jul; 312(1):22-30. PubMed ID: 8031131 [TBL] [Abstract][Full Text] [Related]
22. Superoxide dismutase-like activities of copper(II) complexes tested in serum. Huber KR; Sridhar R; Griffith EH; Amma EL; Roberts J Biochim Biophys Acta; 1987 Sep; 915(2):267-76. PubMed ID: 2820500 [TBL] [Abstract][Full Text] [Related]
23. Inactivation of erythrocyte Cu-Zn-superoxide dismutase through nonenzymatic glycosylation. Taniquchi N; Kinoshita N; Arai K; Iizuka S; Usui M; Naito T Prog Clin Biol Res; 1989; 304():277-90. PubMed ID: 2506563 [TBL] [Abstract][Full Text] [Related]
24. Cyanide binding to Cu, Zn superoxide dismutase. An NMR study of the Cu(II), Co(II) derivative. Paci M; Desideri A; Rotilio G J Biol Chem; 1988 Jan; 263(1):162-6. PubMed ID: 3335495 [TBL] [Abstract][Full Text] [Related]
25. Point charge distributions and electrostatic steering in enzyme/substrate encounter: Brownian dynamics of modified copper/zinc superoxide dismutases. Sines JJ; Allison SA; McCammon JA Biochemistry; 1990 Oct; 29(40):9403-12. PubMed ID: 2248953 [TBL] [Abstract][Full Text] [Related]
26. Anion binding to the four-copper form of bovine erythrocyte superoxide dismutase: Mechanistic implications. Strothkamp KG; Lippard SJ Biochemistry; 1981 Dec; 20(26):7488-93. PubMed ID: 7326242 [TBL] [Abstract][Full Text] [Related]
27. Cu,Zn superoxide dismutase from Photobacterium leiognathi is an hyperefficient enzyme. Stroppolo ME; Sette M; O'Neill P; Polizio F; Cambria MT; Desideri A Biochemistry; 1998 Sep; 37(35):12287-92. PubMed ID: 9724543 [TBL] [Abstract][Full Text] [Related]
28. [Posttranslational modification of superoxide dismutase in cells; glycation and inactivation of Cu, Zn-superoxide dismutase]. Taniguchi N; Kinoshita N; Arai K Tanpakushitsu Kakusan Koso; 1988 Dec; 33(16):2921-6. PubMed ID: 3150788 [No Abstract] [Full Text] [Related]
29. Mechanism of action of superoxide dismutase from pulse radiolysis and electron paramagnetic resonance. Evidence that only half the active sites function in catalysis. Fielden EM; Roberts PB; Bray RC; Lowe DJ; Mautner GN; Rotilio G; Calabrese L Biochem J; 1974 Apr; 139(1):49-60. PubMed ID: 4377100 [TBL] [Abstract][Full Text] [Related]
30. Competitive inhibition of Cu, Zn superoxide dismutase by monovalent anions. Rigo A; Stevanato R; Viglino P Biochem Biophys Res Commun; 1977 Dec; 79(3):776-83. PubMed ID: 202275 [No Abstract] [Full Text] [Related]
31. Formate as an NMR probe of anion binding to Cu,Zn and Cu,Co bovine erythrocyte superoxide dismutases. Sette M; Paci M; Desideri A; Rotilio G Biochemistry; 1992 Dec; 31(49):12410-5. PubMed ID: 1463727 [TBL] [Abstract][Full Text] [Related]
32. Binding of polyaminocarboxylate chelators to the active-site copper inhibits the GSNO-reductase activity but not the superoxide dismutase activity of Cu,Zn-superoxide dismutase. Ye M; English AM Biochemistry; 2006 Oct; 45(42):12723-32. PubMed ID: 17042490 [TBL] [Abstract][Full Text] [Related]
33. Reduction and inactivation of superoxide dismutase by hydrogen peroxide. Bray RC; Cockle SA; Fielden EM; Roberts PB; Rotilio G; Calabrese L Biochem J; 1974 Apr; 139(1):43-8. PubMed ID: 4377099 [TBL] [Abstract][Full Text] [Related]
34. Studies on the reconstitution of bovine erythrocyte superoxide dismutase. IV. Preparation and some properties of the enzyme in which Co(II) is substituted for Zn(II). Fee JA J Biol Chem; 1973 Jun; 248(12):4229-34. PubMed ID: 4351217 [No Abstract] [Full Text] [Related]
35. Increase in the glucosylated form of erythrocyte Cu-Zn-superoxide dismutase in diabetes and close association of the nonenzymatic glucosylation with the enzyme activity. Arai K; Iizuka S; Tada Y; Oikawa K; Taniguchi N Biochim Biophys Acta; 1987 May; 924(2):292-6. PubMed ID: 3567220 [TBL] [Abstract][Full Text] [Related]
36. Urea-derived cyanate forms epsilon-amino-carbamoyl-lysine (homocitrulline) in leukocyte proteins in patients with end-stage renal disease on peritoneal dialysis. Kraus LM; Elberger AJ; Handorf CR; Pabst MJ; Kraus AP J Lab Clin Med; 1994 Jun; 123(6):882-91. PubMed ID: 8201267 [TBL] [Abstract][Full Text] [Related]
37. Substitution of arginine for lysine 134 alters electrostatic parameters of the active site in shark Cu,Zn superoxide dismutase. Calabrese L; Polticelli F; O'Neill P; Galtieri A; Barra D; SchininĂ E; Bossa F FEBS Lett; 1989 Jun; 250(1):49-52. PubMed ID: 2500367 [TBL] [Abstract][Full Text] [Related]
38. Cobalt substitution studies on bovine erythrocyte superoxide dismutase: evidence for a novel cobalt-superoxide dismutase derivative. Salvato B; Beltramini M; Ricchelli F; Tallandini L Biochim Biophys Acta; 1989 Sep; 998(1):14-20. PubMed ID: 2790051 [TBL] [Abstract][Full Text] [Related]
39. Phosphate is an inhibitor of copper-zinc superoxide dismutase. Mota de Freitas D; Valentine JS Biochemistry; 1984 Apr; 23(9):2079-82. PubMed ID: 6722136 [TBL] [Abstract][Full Text] [Related]
40. A kinetic study of the reactions between H2O2 and Cu,Zn superoxide dismutase; evidence for an electrostatic control of the reaction rate. Viglino P; Scarpa M; Rotilio G; Rigo A Biochim Biophys Acta; 1988 Jan; 952(1):77-82. PubMed ID: 3334855 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]