BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 6299114)

  • 1. Role of the electrochemical gradient for Na+ in D-glucose transport by mullet kidney.
    Lee SH; Pritchard JB
    Am J Physiol; 1983 Mar; 244(3):F278-88. PubMed ID: 6299114
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Na+-electrochemical potential-mediated transport of D-glucose in renal brush border membrane vesicles.
    Sacktor B; Beck JC
    Curr Probl Clin Biochem; 1977 Oct 23-26; 8():159-69. PubMed ID: 616356
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A high yield preparation of brush border membrane vesicles from organ-cultured embryonic chick jejunum: demonstration of insulin sensitivity of Na(+)-dependent D-glucose transport.
    Debiec H; Cross HS; Peterlik M
    J Nutr; 1991 Jan; 121(1):105-13. PubMed ID: 1992047
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potential-dependent D-glucose uptake by renal brush border membrane vesicles in the absence of sodium.
    Hilden S; Sacktor B
    Am J Physiol; 1982 Apr; 242(4):F340-5. PubMed ID: 7065244
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Na+ gradient-dependent glycine uptake in basolateral membrane vesicles from the dog kidney.
    Schwab SJ; Hammerman MR
    Am J Physiol; 1985 Sep; 249(3 Pt 2):F338-45. PubMed ID: 4037088
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The sodium electrochemical potential-mediated uphill transport of D-glucose in renal brush border membrane vesicles.
    Beck JC; Sacktor B
    J Biol Chem; 1978 Aug; 253(15):5531-5. PubMed ID: 670213
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Membrane potential-sensitive fluorescence changes during Na+-dependent D-glucose transport in renal brush border membrane vesicles.
    Beck JC; Sacktor B
    J Biol Chem; 1978 Oct; 253(20):7158-62. PubMed ID: 701240
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Renal handling of taurine, L-alanine, L-glutamate and D-glucose in Opsanus tau: studies on isolated brush border membrane vesicles.
    Wolff NA; Kinne R; Elger B; Goldstein L
    J Comp Physiol B; 1987; 157(5):573-81. PubMed ID: 2891734
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of phloretin on Na+-dependent D-glucose uptake by intestinal brush border membrane vesicles.
    Yokota K; Nishi Y; Takesue Y
    Biochem Pharmacol; 1983 Nov; 32(22):3453-7. PubMed ID: 6651868
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sulfate-sodium cotransport by brush-border membrane vesicles isolated from rat ileum.
    Lücke H; Stange G; Murer H
    Gastroenterology; 1981 Jan; 80(1):22-30. PubMed ID: 6161060
    [TBL] [Abstract][Full Text] [Related]  

  • 11. myo-Inositol transport in renal brush border vesicles and it inhibition by D-glucose.
    Hammerman MR; Sacktor B; Daughaday WH
    Am J Physiol; 1980 Aug; 239(2):F113-20. PubMed ID: 6773422
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural state of the Na+/D-glucose cotransporter in calf kidney brush-border membranes. Target size analysis of Na+-dependent phlorizin binding and Na+-dependent D-glucose transport.
    Lin JT; Szwarc K; Kinne R; Jung CY
    Biochim Biophys Acta; 1984 Nov; 777(2):201-8. PubMed ID: 6148966
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Na+ gradient-dependent transport of D-glucose in renal brush border membranes.
    Aronson PS; Sacktor B
    J Biol Chem; 1975 Aug; 250(15):6032-9. PubMed ID: 1150669
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proton-coupled L-lysine uptake by renal brush border membrane vesicles from mullet (Mugil cephalus).
    Lee SH; Pritchard JB
    J Membr Biol; 1983; 75(2):171-8. PubMed ID: 6312048
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of phlorizin derivatives and their inhibitory effect on the renal sodium/D-glucose cotransport system.
    Lin JT; Hahn KD; Kinne R
    Biochim Biophys Acta; 1982 Dec; 693(2):379-88. PubMed ID: 7159584
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of ionophores to study Na+ transport pathways in renal microvillus membrane vesicles.
    Aronson PS; Kinsella JL
    Fed Proc; 1981 Jun; 40(8):2213-7. PubMed ID: 6263713
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energy-dependence of phlorizin binding to isolated renal microvillus membranes. Evidence concerning the mechanism of coupling between the electrochemical Na+ gradient the sugar transport.
    Aronson PS
    J Membr Biol; 1978 Jul; 42(1):81-98. PubMed ID: 671529
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The mechanism of maleic acid nephropathy: investigations using brush border membrane vesicles.
    Silverman M
    Membr Biochem; 1981; 4(1):63-9. PubMed ID: 7219195
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Developmental maturation of D-glucose transport by rat jejunal brush-border membrane vesicles.
    Ghishan FK; Wilson FA
    Am J Physiol; 1985 Jan; 248(1 Pt 1):G87-92. PubMed ID: 4038441
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Decreased Na+-gradient-dependent D-glucose transport in brush-border membrane vesicles from rabbits with experimental Fanconi syndrome.
    Yanase M; Orita Y; Okada N; Nakanishi T; Horio M; Ando A; Abe H
    Biochim Biophys Acta; 1983 Aug; 733(1):95-101. PubMed ID: 6882758
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.