These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 6299459)

  • 41. Blood-brain barrier transport of 1-aminocyclohexanecarboxylic acid, a nonmetabolizable amino acid for in vivo studies of brain transport.
    Aoyagi M; Agranoff BW; Washburn LC; Smith QR
    J Neurochem; 1988 Apr; 50(4):1220-6. PubMed ID: 3346675
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Inhibition of uptake, steady-state currents, and transient charge movements generated by the neuronal GABA transporter by various anticonvulsant drugs.
    Eckstein-Ludwig U; Fei J; Schwarz W
    Br J Pharmacol; 1999 Sep; 128(1):92-102. PubMed ID: 10498839
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Arachidonic acid inhibits uptake of glutamate and glutamine but not of GABA in cultured cerebellar granule cells.
    Yu AC; Chan PH; Fishman RA
    J Neurosci Res; 1987; 17(4):424-7. PubMed ID: 2887664
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Selective uptake of neuroactive amino acids by both oligodendrocytes and astrocytes in primary dissociated culture: a possible role for oligodendrocytes in neurotransmitter metabolism.
    Reynolds R; Herschkowitz N
    Brain Res; 1986 Apr; 371(2):253-66. PubMed ID: 2421853
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Electrically evoked [3H]GABA release from cerebral cortical cultures: an in vitro approach for studying glutamate-induced neurotoxicity.
    Tomasini MC; Antonelli T
    Synapse; 1998 Nov; 30(3):247-54. PubMed ID: 9776128
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Inhibition of neutral amino acid transport across the human blood-brain barrier by phenylalanine.
    Shulkin BL; Betz AL; Koeppe RA; Agranoff BW
    J Neurochem; 1995 Mar; 64(3):1252-7. PubMed ID: 7861158
    [TBL] [Abstract][Full Text] [Related]  

  • 47. GABA release triggered by the activation of neuron-like non-NMDA receptors in cultured type 2 astrocytes is carrier-mediated.
    Gallo V; Patrizio M; Levi G
    Glia; 1991; 4(3):245-55. PubMed ID: 1680100
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Ornithine-delta-aminotransferase exhibits different kinetic properties in astrocytes, cerebral cortex interneurons, and cerebellar granule cells in primary culture.
    Drejer J; Schousboe A
    J Neurochem; 1984 Apr; 42(4):1194-7. PubMed ID: 6142093
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [3H]GABA uptake as a marker for cell type in primary cultures of cerebellum and olfactory bulb.
    Currie DN; Dutton GR
    Brain Res; 1980 Oct; 199(2):473-81. PubMed ID: 6998541
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Release of [+/-3H]-cis-3-aminocyclohexanecarboxylic acid ([3H]-ACHC) from central neurones [proceedings].
    Bowery NG; Neal MJ
    Br J Pharmacol; 1978 Mar; 62(3):431P. PubMed ID: 638355
    [No Abstract]   [Full Text] [Related]  

  • 51. Uptake of gamma-aminobutyric acid by human blood platelets: comparison with CNS uptake.
    Hambley JW; Johnston GA
    Life Sci; 1985 May; 36(21):2053-62. PubMed ID: 3923286
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Characterization of the uptake of GABA, nipecotic acid and cis-4-OH-nipecotic acid in cultured neurons and astrocytes.
    Larsson OM; Krogsgaard-Larsen P; Schousboe A
    Neurochem Int; 1985; 7(5):853-60. PubMed ID: 20492996
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Modification of tritiated gamma-amino-n-butyric acid transport in rabies virus-infected primary cortical cultures.
    Ladogana A; Bouzamondo E; Pocchiari M; Tsiang H
    J Gen Virol; 1994 Mar; 75 ( Pt 3)():623-7. PubMed ID: 8126458
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Comparison between (RS)-nipecotic acid and GABA transport in cultured astrocytes: coupling with two sodium ions.
    Larsson OM; Schousboe A
    Neurochem Res; 1981 Mar; 6(3):257-66. PubMed ID: 7279105
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Distinct changes in neuronal and astrocytic amino acid neurotransmitter metabolism in mice with reduced numbers of synaptic vesicles.
    Bogen IL; Risa Ø; Haug KH; Sonnewald U; Fonnum F; Walaas SI
    J Neurochem; 2008 Jun; 105(6):2524-34. PubMed ID: 18346203
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Uptake of [3H]GABA by oligodendrocytes in dissociated brain cell culture: a combined autoradiographic and immunocytochemical study.
    Reynolds R; Herschkowitz N
    Brain Res; 1984 Nov; 322(1):17-31. PubMed ID: 6518368
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Transport of valproate and its effects on GABA uptake in astroglial primary culture.
    Nilsson M; Hansson E; Rönnbäck L
    Neurochem Res; 1990 Aug; 15(8):763-7. PubMed ID: 2215855
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Bipotential precursors of putative fibrous astrocytes and oligodendrocytes in rat cerebellar cultures express distinct surface features and "neuron-like" gamma-aminobutyric acid transport.
    Levi G; Gallo V; Ciotti MT
    Proc Natl Acad Sci U S A; 1986 Mar; 83(5):1504-8. PubMed ID: 3513179
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Kinetic and pharmacologic characterization of gamma-aminobutyric acid receptive sites from mammalian brain.
    Lester BR; Peck EJ
    Brain Res; 1979 Jan; 161(1):79-97. PubMed ID: 215278
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Functional and molecular identification of sodium-coupled dicarboxylate transporters in rat primary cultured cerebrocortical astrocytes and neurons.
    Yodoya E; Wada M; Shimada A; Katsukawa H; Okada N; Yamamoto A; Ganapathy V; Fujita T
    J Neurochem; 2006 Apr; 97(1):162-73. PubMed ID: 16524379
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.