These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 6299459)

  • 61. Kainate receptors coupled to the evoked release of [3H]-gamma-aminobutyric acid from striatal neurons in primary culture: potentiation by lithium ions.
    Weiss S; Kemp DE; Bauce L; Tse FW
    Mol Pharmacol; 1990 Aug; 38(2):229-36. PubMed ID: 2166903
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Growth cones isolated from developing rat forebrain: uptake and release of GABA and noradrenaline.
    Lockerbie RO; Gordon-Weeks PR; Pearce BR
    Brain Res; 1985 Aug; 353(2):265-75. PubMed ID: 4041908
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Comparison of the uptake of [3H]-gabapentin with the uptake of L-[3H]-leucine into rat brain synaptosomes.
    Thurlow RJ; Hill DR; Woodruff GN
    Br J Pharmacol; 1996 Jun; 118(3):449-56. PubMed ID: 8762064
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Kinetic characterization of GABA-transaminase from cultured neurons and astrocytes.
    Larsson OM; Schousboe A
    Neurochem Res; 1990 Nov; 15(11):1073-7. PubMed ID: 2089267
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Receptor regulation of the glutamate, GABA and taurine high-affinity uptake into astrocytes in primary culture.
    Hansson E; Rönnbäck L
    Brain Res; 1991 May; 548(1-2):215-21. PubMed ID: 1678295
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Astrocytes regulate inhibitory neurotransmission through GABA uptake, metabolism, and recycling.
    Andersen JV; Schousboe A; Wellendorph P
    Essays Biochem; 2023 Mar; 67(1):77-91. PubMed ID: 36806927
    [TBL] [Abstract][Full Text] [Related]  

  • 67. L-carnitine uptake into primary rat cortical cultures: interaction with GABA.
    Virmani MA; Conti R; Spadoni A; Rossi S; Arrigoni-Martelli E
    Brain Res Mol Brain Res; 1994 Aug; 25(1-2):105-12. PubMed ID: 7984034
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Uptake of gamma-aminobutyric acid by catfish brain.
    Malizia LA; Tunnicliff G
    Comp Biochem Physiol C Comp Pharmacol Toxicol; 1987; 87(1):37-40. PubMed ID: 2885138
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Insulin effect on GABA uptake in astroglial primary cultures.
    Bouhaddi K; Thomopoulos P; Fages C; Khelil M; Tardy M
    Neurochem Res; 1988 Dec; 13(12):1119-24. PubMed ID: 3070431
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Metabolic and pathologic investigation of 1-aminocyclohexanecarboxylic acid (ACHC), a metabolite of 6-(1-aminocyclohexanecarboxamido)-penicillanic acid (cyclacillin).
    Janssen FW; Young EM; Kirkman SK; Agersborg HP; Tucker WE; Ruelius HW
    Toxicol Appl Pharmacol; 1974 Jul; 29(1):19-34. PubMed ID: 4378191
    [No Abstract]   [Full Text] [Related]  

  • 71. Variations in the kinetic pattern of astrocytic gamma-aminobutyric acid uptake when inhibited by different barbiturates.
    Larsson OM; Schousboe A; Krogsgaard-Larsen P; Hertz L
    Biochem Pharmacol; 1982 Aug; 31(16):2694-6. PubMed ID: 7138565
    [No Abstract]   [Full Text] [Related]  

  • 72. Astrocytes as GABA-ergic and GABA-ceptive cells.
    Yoon BE; Woo J; Lee CJ
    Neurochem Res; 2012 Nov; 37(11):2474-9. PubMed ID: 22700085
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Competitive inhibition of GABA uptake in rat brain slices by some GABA analogues of restricted conformation.
    Beart PM; Johnston GA; Uhr ML
    J Neurochem; 1972 Aug; 19(8):1855-61. PubMed ID: 5047849
    [No Abstract]   [Full Text] [Related]  

  • 74. Growth dependent induction of high affinity gamma-amino-butyric acid transport in cultures of a normal human brain cell line.
    Walum E; Westermark B; Pontén J
    Brain Res; 1981 May; 212(1):215-8. PubMed ID: 7225857
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Stimulation of amino acid accumulation in neuroblastoma and astrocytoma cells by L-histidine.
    Hannuniemi R; Holopainen I; Korpi ER; Oja SS
    Neurochem Res; 1985 Apr; 10(4):483-9. PubMed ID: 4000398
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Uptake and metabolism of GABA in astrocytes cultured from dissociated mouse brain hemispheres.
    Schousboe A; Hertz L; Svenneby G
    Neurochem Res; 1977 Apr; 2(2):217-29. PubMed ID: 24271954
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Kinetics and mechanism of decomposition of N-chloroamino acids. II: conformationally restricted models.
    Awad R; Hussain A; Crooks PA
    J Pharm Sci; 1990 Dec; 79(12):1121-2. PubMed ID: 2079660
    [TBL] [Abstract][Full Text] [Related]  

  • 78. A possible role of the non-GAT1 GABA transporters in transfer of GABA from GABAergic to glutamatergic neurons in mouse cerebellar neuronal cultures.
    Suñol C; Babot Z; Cristòfol R; Sonnewald U; Waagepetersen HS; Schousboe A
    Neurochem Res; 2010 Sep; 35(9):1384-90. PubMed ID: 20512624
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Pharmacological and functional characterization of astrocytic GABA transport: a short review.
    Schousboe A
    Neurochem Res; 2000 Oct; 25(9-10):1241-4. PubMed ID: 11059798
    [TBL] [Abstract][Full Text] [Related]  

  • 80. GAT-3, a high-affinity GABA plasma membrane transporter, is localized to astrocytic processes, and it is not confined to the vicinity of GABAergic synapses in the cerebral cortex.
    Minelli A; DeBiasi S; Brecha NC; Zuccarello LV; Conti F
    J Neurosci; 1996 Oct; 16(19):6255-64. PubMed ID: 8815906
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.